Skip to main content
Log in

A canonical form for self-adjoint pencils in Hilbert space

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

We characterize those pencils P=λA−B of operators on a separable Hilbert space H for which a linear homeomorphism D of H exists satisfying the following: (i) H decomposes into a direct sum F+G, orthogonal in a (perhaps indefinite) inner product induced by A, where F is finite dimensional (ii) D*PD=PF⊕(λIG−C) where PF is a (congruence) canonical form for the general self-adjoint pencil on F, and C is a bounded self-adjoint operator on G. For a given P, explicit constructions are given for C, D, F, G and PF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Ja Azizov, Completely continuous operators that are selfadjoint with respect to a degenerate indefinite metric (Russian), Mat. Issled 7 (1972), 237–240.

    Google Scholar 

  2. P.A. Binding, Generalised and quadratic eigenvalue problems. Applic. Anal., 12 (1981), 27–45.

    Google Scholar 

  3. J. Bognár, Indefinite Inner Product Spaces, Springer-Verlag, 1974.

  4. T.W. Gamelin, Decomposition theorems for Fredholm operators, Pacific J. Math., 15 (1965), 97–106.

    Google Scholar 

  5. F.R. Gantmacher, Theory of Matrices vol. 2, Chelsea, 1959.

  6. L.-K. Hua, On the theory of automorphic functions of a matrix variable II—the classification of hypercircles under the symmetric group, Amer. J. Math., 66 (1944), 531–563.

    Google Scholar 

  7. M.H. Ingraham, K. Wegner, The equivalence of pairs of matrices, Trans. Amer. Math. Soc., 38 (1935), 145–162.

    Google Scholar 

  8. I.S. Iohvidov, M.G. Krein, H. Langer, Indefinite Inner Product Spaces, Akademie-Verlag, Berlin, 1982.

    Google Scholar 

  9. T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. d'Analyse Math., 6 (1958), 261–322.

    Google Scholar 

  10. T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, 1976.

  11. A.I. Mal'cev, Foundations of Linear Algebra, Freeman, 1963.

  12. P. Muth, Ueber reelle Aequivalenz von Scharen reeller quadratischer Formen, J. für reine und angewandte Math., 128 (1905), 302–321.

    Google Scholar 

  13. R.C. Thompson, The characteristic polynomial of a principal subpencil of a Hermitian matrix pencil, Lin. Alg. Appl., 14 (1976), 135–177.

    Google Scholar 

  14. H.W. Turnbull, On the equivalence of pencils of Hermitian forms, Proc. Lond. Math. Soc., 39 (1935), 232–248.

    Google Scholar 

  15. R.E.L. Turner, Some variational principles for a nonlinear eigenvalue problem, J. Math. Anal. Appl., 17 (1967), 151–160.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Binding, P. A canonical form for self-adjoint pencils in Hilbert space. Integr equ oper theory 12, 324–342 (1989). https://doi.org/10.1007/BF01235736

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01235736

Keywords

Navigation