Skip to main content
Log in

New lower semicontinuity results for polyconvex integrals

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Summary

We study integral functionals of the formF(u, Ω)=∫Ω f(▽u)dx, defined foru ∈ C1(Ω;R k), Ω⊑R n. The functionf is assumed to be polyconvex and to satisfy the inequalityf(A) ≥c0¦ℳ(A)¦ for a suitable constant c0 > 0, where ℳ(A) is then-vector whose components are the determinants of all minors of thek×n matrixA. We prove thatF is lower semicontinuous onC 1(Ω;R k) with respect to the strong topology ofL 1(Ω;R k). Then we consider the relaxed functional ℱ, defined as the greatest lower semicontinuous functional onL 1(Ω;R k) which is less than or equal toF on C1(Ω;R k). For everyu ∈ BV(Ω;R k) we prove that ℱ (u,Ω) ≥ ∫Ω f(▽u)dx+c0¦Dsu¦(Ω), whereDu=▽u dx+Dsu is the Lebesgue decomposition of the Radon measureDu. Moreover, under suitable growth conditions onf, we show that ℱ (u,Ω)=∫Ω f(▽u)dx for everyu ∈ W1,p(Ω;R k), withp ≥ min{n,k}. We prove also that the functional ℱ (u, Ω) can not be represented by an inte- gral for an arbitrary functionu ∈ BVloc(R n;R k). In fact, two examples show that, in general, the set functionΩ → ℱ (u, Ω) is not subadditive whenu ∈ BVloc(R n;R k), even ifu ∈ W 1,ploc (R n;R k) for everyp < min{n,k}. Finally, we examine in detail the properties of the functionsu ∈ BV(Ω;R k) such that ℱ (u, Ω)=∫Ω f(▽u)dx, particularly in the model casef(A)=¦ℳ(A)¦.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal.63 (1977) 337–403

    Google Scholar 

  2. Ball J.M., Murat F.:W 1,p-quasiconvexity and variational problems for multiple integrals. J. Funct. Anal.58 (1984) 225–253, and66 (1986) 439–439

    Google Scholar 

  3. Brezis H., Coron J.M., Lieb E.H.: Harmonic maps with defects. Comm. Math. Phys.107 (1986) 679–705

    Google Scholar 

  4. Buttazzo G.: Semicontinuity, Relaxation and Integral Representation Problems in the Calculus of Variations. Pitman Res. Notes in Math., Longman, Harlow, 1989

    Google Scholar 

  5. Dacorogna B.: Direct Methods in the Calculus of Variations. Springer, Berlin Heidelberg New York, 1989

    Google Scholar 

  6. De Giorgi E.: Riflessioni su alcuni problemi variazionali. Equazioni Differenziali e Calcolo delle Variazioni (Pisa, 1991)

  7. De Giorgi E.: On the relaxation of functionals defined on cartesian manifolds, 33–38, Plenum Press, New York, 1992. Developments in Partial Differential Equations and Applications to Mathematical Physics (Ferrara, 1991)

    Google Scholar 

  8. Ekeland I., Temam R.: Convex Analysis and Variational Problems. North-Holland, Amsterdam, 1976

    Google Scholar 

  9. Federer H.: Geometric Measure Theory. Springer, Berlin Heidelberg New York, 1969

    Google Scholar 

  10. Giaquinta M., Modica G., Souček J.: Cartesian currents, weak diffeomorphisms and nonlinear elasticity. Arch. Rational Mech. Anal.106 (1989) 97–159

    Google Scholar 

  11. Giaquinta M., Modica G., Souček J.: Cartesian currents and variational problems for mappings into spheres. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)16 (1989) 393–485

    Google Scholar 

  12. Giaquinta M., Modica G., Souček J.: Erratum and addendum to “Cartesian currents, weak diffeomorphisms and nonlinear elasticity”. Arch. Rational Mech. Anal.109 (1990) 385–392

    Google Scholar 

  13. Giaquinta M., Modica G., Souček J.: Graphs of finite mass which cannot be approximated in area by smooth graphs. Manus. Math.78 (1993) 259–271

    Google Scholar 

  14. Giusti E.: Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston Basel, 1984

    Google Scholar 

  15. Goffman C., Serrin J.: Sublinear functions of measures and variational integrals. Duke Math. J.31 (1964) 159–178

    Google Scholar 

  16. Lebesgue H.: Integrale, longeur, aire. Ann. Mat. Pura Appl.7 (1902) 231–359

    Google Scholar 

  17. Luckhaus S., Modica L.: The Gibbs-Thompson relation within the gradient theory of phase transitions. Archive Rational Mech. Anal.107 (1989) 71–83

    Google Scholar 

  18. Müller S.: Weak continuity of determinants and nonlinear elasticity. C. R. Acad. Sci. Paris Sèr. I Math.307 (1988) 501–506

    Google Scholar 

  19. Meyers N.G., Serrin J.: H=W. Proc. Nat. Acad. Sci. U.S.A.51 (1964) 1055–1056

    Google Scholar 

  20. Miranda M.: Superfici cartesiane generalizzate ed insiemi di perimetro localmente finito sui prodotti cartesiani. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3)18 (1964) 515–542

    Google Scholar 

  21. Morrey C.B. Jr.: Quasi-convexity and the semicontinuity of multiple integrals. Pacific J. Math.2 (1952) 25–53

    Google Scholar 

  22. Morrey C.B. Jr.: Multiple Integrals in the Calculus of Variations. Springer, Berlin Heidelberg New York, 1966

    Google Scholar 

  23. Reshetnyak Yu.G.: Weak convergence of completely additive vector functions on a set. Siberian Math. J.9 (1968) 1039–1045

    Google Scholar 

  24. Serrin J.: On the definition and properties of certain variational integrals. Trans. Am. Math. Soc.101 (1961) 139–167

    Google Scholar 

  25. Simon L.M.: Lectures on Geometric Measure Theory. Proc. of the Centre for Mathematical Analysis (Canberra), Australian National University, 3, 1983

  26. Vainberg M.M.: Variational Methods for the Study of Non-Linear Operators. Holden-Day, San Francisco, 1964

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acerbi, E., Dal Maso, G. New lower semicontinuity results for polyconvex integrals. Calc. Var 2, 329–371 (1994). https://doi.org/10.1007/BF01235534

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01235534

Mathematics subject classification (1991)

Navigation