Skip to main content
Log in

Superrigidity for homomorphisms into isometry groups of CAT(−1) spaces

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

CAT(−1) spaces are generalizations of manifolds with negative curvature. In this paper, we prove three types of rigidity results related to CAT(−1) spaces, namely the rigidity of the isometric actions on CAT(−1) spaces under the commensurability subgroups, the higher rank lattices and certain ergodic cocycles. The main idea for our approach relies on a study of the boundary theory we established for the general CAT(−1) spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [Ad] S. Adams,Reduction of cocycles with hyperbolic targets, preprint.

  • [Ba] W. Ballmann,Lectures on Spaces of Nonpositive Curvature, DMV, Birkhäuser, 1995.

  • [Bu] M. Burger,Rigidity properties of group actions on CAT(0)-spaces, Proceedings of the ICM, Zürich, Switzerland (1994), Birkhäuser, 1995, 761–769.

  • [BM] M. Burger, S. Mozes, CAT(−1)spaces, divergence groups and their commensurators, J. Amer. Math. Soc.9 (1996), 57–93.

    Google Scholar 

  • [CFS] I. P. Cornfeld, S. V. Fomin, Ya. G. Sinai,Ergodic Theory, Springer-Verlag, 1982.

  • [F] G. Folland,Real Analysis, John Wiley & Sons, 1984.

  • [GH] E. Ghys, P. de la Harpe (Editors),Sur les Groupes Hyperboliques d'après Mikhael Gromov, Progress in Mathematics, Vol. 83, Birkhäuser, 1990.

  • [GHV] E. Ghys, A. Haefliger, A. Verjovsky (Editors),Group Theory from a Geometrical Viewpoint, World Scientific, 1991.

  • [GLP] M. Gromov,Structures Métriques pour les Variétés Riemanniennes, rédigé par J. Lafontaine et P. Pansu, Cedic/F. Nathan, 1981.

  • [Gr] M. Gromov,Hyperbolic Groups, Essays in Group Theory, edited by S. M. Gersten, MSRI series, Vol. 8, Springer-Verlag, 1987.

  • [LMZ] A. Lubotzky, S. Mozes, R. Zimmer,Superrigidity for the commensurability group of tree lattices, Comment. Math. Helv.69 (1994), 523–548.

    Google Scholar 

  • [Ma1] G. A. Margulis,Discrete Subgroups of Semisimple Lie Groups, Springer-Verlag, 1991.

  • [Ma2] G. A. Margulis,On the decomposition of discrete subgroup into amalgams, Sel. Math. Sov.1 (1981), 197–213.

    Google Scholar 

  • [Ma3] Г/ A. Маргэлис, Юакмор-грепп ∂искремнqj по∂грэпп и меория мер, Юэнкц анализ и его прил.12, 4 (1978), 64–80. English translation: G. A. Margulis,Quotient groups of discrete subgroups and measure theory, Funct. Anal. Appl.12 (1978), 295–305.

    Google Scholar 

  • [Ma4] G. A. Margulis,Superrigidity of commensurability subgroups and generalized harmonic maps, 1994.

  • [MT] G. A. Margulis, G. M. Tomanov,Invariant measures for actions of unipotent groups over local fields on homogeneous spaces, Invent. Math.116 (1994), 347–392.

    Google Scholar 

  • [Mo] G. D. Mostow,Strong Rigidity of Locally Symmetric Spaces, Annals of Math. Studies78, Princeton Univ. Press, 1973.

  • [Sp] R. J. Spatzier,Harmonic analysis in rigidity theory, Ergodic theory and its connections with harmonic analysis (Alexandria, 1993), 153–205, London Math. Soc. Lecture Note Ser., Vol. 205, Cambridge Univ. Press, Cambridge, 1995.

    Google Scholar 

  • [St] R. Steinberg,Lectures on Chevalley Groups, Yale University, 1967.

  • [Z] R. J. Zimmer,Ergodic Theory and Semisimple Groups, Birkhäuser, 1984.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, Y. Superrigidity for homomorphisms into isometry groups of CAT(−1) spaces. Transformation Groups 2, 289–323 (1997). https://doi.org/10.1007/BF01234662

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01234662

Keywords

Navigation