Abstract
Whenf is a convex function ofR h, andk is an integer with 0<k<h, then the setσ k(f)=x:dim(∂f(x)k may be covered by countably many manifolds of dimensionh−k and classC 2 except anℋ h−k negligible subset.
Similar content being viewed by others
References
Alberti, G., Ambrosio, L.: Paper in preparation
Alberti, G., Ambrosio L., Cannarsa, P.: On the singularities of convex functions. Manuscr. Math.76, 421–435 (1992)
Ambrosio, L.: Su alcune proprietà delle funzioni convesse. Rend. Mat. Acc. Lincei s. IX, v.3, 193–202 (1992)
Anzellotti, G., Ossanna, E.: Singular sets of surfaces with generalized curvatures. Preprint of Trento University
Anzellotti, G., Serapioni, R.:C k Rectifiable sets. Preprint of Trento University
Brezis, H.: Opérateurs maximaux et semi-groupes de contractions dans les espaces de Hilbert. Amsterdam: North-Holland 1973
Calderon, A.P., Zygmund, P.: Local properties of solutions of elliptic partial differential equations. Stud. Math.20, 171–225 (1961)
Dorronsoro, J.R.: Differentiability properties of functions with bounded variation. Indiana Univ. Math. J.38, 1027–1045 (1989)
Reshetnyak, Y.G.: Generalized derivative and differentiability almost everywhere. Math. USSR Sb.4, 293–302 (1968)
Rockafellar, R.T.: Convex analysis. Princeton: Princeton University Press 1970
Simon, L.M.: Lectures on geometric measure theory. (Proceedings of the Centre for Mathematical Analysis, vol. 3) Canberra: Australian National University Press 1983
Ziemer, W.P.: Weakly differentiable functions, Sobolev spaces and functions of bounded variation. Berlin Heidelberg New York: Springer 1989
Author information
Authors and Affiliations
Additional information
The author is supported by INdAM
Rights and permissions
About this article
Cite this article
Alberti, G. On the structure of singular sets of convex functions. Calc. Var 2, 17–27 (1994). https://doi.org/10.1007/BF01234313
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF01234313