Skip to main content
Log in

On the structure of singular sets of convex functions

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Whenf is a convex function ofR h, andk is an integer with 0<k<h, then the setσ k(f)=x:dim(∂f(x)k may be covered by countably many manifolds of dimensionh−k and classC 2 except an h−k negligible subset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberti, G., Ambrosio, L.: Paper in preparation

  2. Alberti, G., Ambrosio L., Cannarsa, P.: On the singularities of convex functions. Manuscr. Math.76, 421–435 (1992)

    Google Scholar 

  3. Ambrosio, L.: Su alcune proprietà delle funzioni convesse. Rend. Mat. Acc. Lincei s. IX, v.3, 193–202 (1992)

    Google Scholar 

  4. Anzellotti, G., Ossanna, E.: Singular sets of surfaces with generalized curvatures. Preprint of Trento University

  5. Anzellotti, G., Serapioni, R.:C k Rectifiable sets. Preprint of Trento University

  6. Brezis, H.: Opérateurs maximaux et semi-groupes de contractions dans les espaces de Hilbert. Amsterdam: North-Holland 1973

    Google Scholar 

  7. Calderon, A.P., Zygmund, P.: Local properties of solutions of elliptic partial differential equations. Stud. Math.20, 171–225 (1961)

    Google Scholar 

  8. Dorronsoro, J.R.: Differentiability properties of functions with bounded variation. Indiana Univ. Math. J.38, 1027–1045 (1989)

    Google Scholar 

  9. Reshetnyak, Y.G.: Generalized derivative and differentiability almost everywhere. Math. USSR Sb.4, 293–302 (1968)

    Google Scholar 

  10. Rockafellar, R.T.: Convex analysis. Princeton: Princeton University Press 1970

    Google Scholar 

  11. Simon, L.M.: Lectures on geometric measure theory. (Proceedings of the Centre for Mathematical Analysis, vol. 3) Canberra: Australian National University Press 1983

    Google Scholar 

  12. Ziemer, W.P.: Weakly differentiable functions, Sobolev spaces and functions of bounded variation. Berlin Heidelberg New York: Springer 1989

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The author is supported by INdAM

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alberti, G. On the structure of singular sets of convex functions. Calc. Var 2, 17–27 (1994). https://doi.org/10.1007/BF01234313

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01234313

Mathematics subject classification

Navigation