Celestial mechanics

, Volume 30, Issue 2, pp 197–218 | Cite as

A second fundamental model for resonance

  • J. Henrard
  • A. Lemaitre
Article

Abstract

We analyse a simple one degree of freedom Hamiltonian system depending upon a parameter\(H = - 3(\delta + 1)R + R^2 - 2\sqrt {2R} \cos r\). This model is much closer to resonance problems arising in Celestial Mechanics than the pendulum.

We deduce from it the conditions of capture into resonance or escape from resonance for systems drifting slowly. We apply this analysis to the Enceladus-Dione resonance.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borderies, N.: 1980, ‘La rotation de Mars: Théorie analytique, Analyse d'observations de l'expérience Viking’, Thesis, Univ. P. Sabatier (Toulouse).Google Scholar
  2. Colombo, G., Franklin, F. A., and Shapiro, I. I.: 1974,Astron. J. 79, 61.Google Scholar
  3. Garfinkel, B., Jupp, A., Williams, C.: 1971,Astron. J. 76, 157.Google Scholar
  4. Greenberg, R.: 1973,Astron. J. 78, 338.Google Scholar
  5. Greenberg, R.: 1977,Vistas in Astronomy 21, 209.Google Scholar
  6. Goldreich, P.: 1965,Monthly Notices Roy. Astron. Soc. 130, 159.Google Scholar
  7. Henrard, J.: 1974,Celes. Mech. 10, 437.Google Scholar
  8. Henrard, J.: 1982a,Celes. Mech. 27, 3.Google Scholar
  9. Henrard, J.: 1982b, ‘The Adiabatic Invariant: Its Use in Celestial Mechanics’, in V. Szebehely (ed.),Applications of Modern Dynamics to Celestial Mechanics and Astrodynamics, D. Reidel Publ. Co., Dordrecht, Holland.Google Scholar
  10. Henrard, J.: 1982c, ‘Orbital Evolution of the Galilean Satellities: The Conservative Model’, in Ferraz-Mello (ed.),Proceedings of the Sao Paulo Conference, D. Reidel Publ. Co., Dordrecht, Holland.Google Scholar
  11. Jupp, A. H.: 1982,Celes. Mech. 26, 413.Google Scholar
  12. Message, P. J.: 1966, ‘On Nearly-Commensurable Periods in the Restricted Problem of Three Bodies’,Proc. IAU Symp. 25, 197.Google Scholar
  13. Peale, S. J.: 1973,Reviews of Geophys, and Space Physics 11, 767.Google Scholar
  14. Peale, S. J.: 1976,Annu. Rev. Astron. Astrophys. 14, 215.Google Scholar
  15. Peale, S. J., Cassen, P., and Reynolds, R. T.: 1980,Icarus 43, 65.Google Scholar
  16. Poincare, H.: 1902,Bull. Astron. 19, 289.Google Scholar
  17. Schubart, J.: 1966, ‘Special Cases of the Restricted Problem of Three Bodies,’Proc. IAU Symp. 25, 197.Google Scholar
  18. Peale, S. J.: 1973,Reviews of Geophys, and Space Physics 11, 767.Google Scholar
  19. Peale, S. J.: 1976,Annu. Rev. Astron. Astrophys. 14, 215.Google Scholar
  20. Peale, S. J., Cassen, P., and Reynolds, R. T.: 1980,Icarus 43, 65.Google Scholar
  21. Poincare, H.: 1902,Bull. Astron. 19, 289.Google Scholar
  22. Schubart, H.: 1966, ‘Special Cases of the Restricted Problem of Three Bodies,Proc. IAU Symp. 25, 187.Google Scholar
  23. Yoder, C. F.: 1973, ‘On the Establishment and Evolution of Orbit-Orbit Resonances’, thesis, Univ. of California, Santa Barbara.Google Scholar
  24. Yoder, C. F.: 1979a,Celes. Mech. 19, 3.Google Scholar
  25. Yoder, C. F. and Peale, S. J.: 1981,Icarus 47, 1.Google Scholar

Copyright information

© D. Reidel Publishing Co. 1983

Authors and Affiliations

  • J. Henrard
    • 1
  • A. Lemaitre
    • 1
  1. 1.Department of MathematicsFacultés Universitaires N.D. de la Paix a NamurNamurBelgium

Personalised recommendations