Skip to main content
Log in

Stabilization due to gyroscopic coupling in dual-spin satellites subject to gravitational torques

  • Published:
Celestial mechanics Aims and scope Submit manuscript

Abstract

The stability of attitude equilibria relative to gravitational torques for a rigid satellite in a circular orbit has been divided into three inertia regions, the Lagrange region of assured Liapunov stability, the Beletskii-Delp region which is often described as stabilized due to gyroscopic coupling, and an assured instability region. The generalization of these regions to the case of dual-spin or gyrostat satellites whose internal spin momentum is along a principal axis is treated here. The stability boundaries are obtained for all possible equilibrium orientations for such vehicles, and the variations of these boundaries corresponding to changes in the internal momentum magnitude, or to aligning the momentum with a different principal axis, are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beletskii, V. V.: 1957, ‘Some Aspects of the Motion of Rigid Bodies in a Newtonian Force Field’, (in Russian),PMM 21, 748.

    Google Scholar 

  2. Breakwell, J. W. and Pringle, R. Jr.: 1966, ‘Nonlinear Resonance Affecting Gravity-Gradient Stability’,Proc of the XVI Int. Astron. Congress, Athens 1965, Gauthier-Villars, Paris.

    Google Scholar 

  3. Crespo da Silva, M. 1968,Attitude Stability and Motions of a Gravity-Stabilized-Gyrostat-Satellite in a Circular Orbit, Ph. D. Dissertation, Stanford University.

  4. Crespo da Silva, M.: 1972,Int. J. Non-Linear Mech. 7, 621.

    Google Scholar 

  5. De Bra, D. B. and Delp, R. H.: 1961,J. Astronaut. Sci. 8, 14.

    Google Scholar 

  6. Hagedorn, P.: 1974,AIAA J. 12, 1057.

    Google Scholar 

  7. Hagedorn, P.: 1978,Nichtlineare Schwingungen, Akademische Verlagsgesellschaft, Wiesbaden.

    Google Scholar 

  8. Halanay, A.: 1966,Differential Equations, Academic Press, New York.

    Google Scholar 

  9. Longman, R. W.: 1969, ‘The Equilibria of Orbiting Gyrostats with Internal Angular Momenta along Principal Axes’,Proceedings of the Symposium on Gravity Gradient Attitude Stabilization, Air Force Report No. SAMSO-TR-69-307. (Also appears as RAND Corporation P 3916, Santa Monica, California, August 1968).

  10. Longman, R. W.: 1969,A Generalized Approach to Gravity-Gradient Stabilization of Gyrostat Satellites, The RAND Corporation, RM-5921-PR.

  11. Longman, R. W. and Robertson, R. E.: 1969,J. Astronaut. Sci. 16, 49.

    Google Scholar 

  12. Longman, R. W.: 1972,AIAA J. 10, 800.

    Google Scholar 

  13. Longman, R. W.: 1973,AIAA J. 11, 916.

    Google Scholar 

  14. Roberson, R. E.: 1968,J. Astronaut. Sci. 15, 242.

    Google Scholar 

  15. Roberson, R. E. and Likins, P. W.: 1969,Ingenieur-Archiv 38, 53.

    Google Scholar 

  16. Roberson, R. E.: 1970,Ingenieur-Archiv 39, 317.

    Google Scholar 

  17. Takahashi, Y., Rabins, M. J. and Auslander, D. M.: 1970,Control and Dynamic Systems, Addison-Wesley, Reading, Mass.

    Google Scholar 

  18. Zajac, E. J.: 1964,J. Astronaut. Sci. 11, 46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Alexander von Humboldt Research Fellow at the Institut für Mechanik; on sabbatical leave from Columbia University, New York, U.S.A.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Longman, R., Hagedorn, P. & Beck, A. Stabilization due to gyroscopic coupling in dual-spin satellites subject to gravitational torques. Celestial Mechanics 25, 353–373 (1981). https://doi.org/10.1007/BF01234177

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01234177

Keywords

Navigation