Skip to main content
Log in

Rectifiable sets and the Traveling Salesman Problem

  • Published:
Inventiones mathematicae Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.


  1. Bishop, C.J., Jones, P.W.: Harmonic measure and arclength. Ann. Math. (to appear)

  2. Calderón, A.P.: Cauchy integrals on Lipschitz curves and related operators. Proc. Natl. Acad. Sci. U.S.A.74, 1324–1327 (1977)

    Google Scholar 

  3. Coifman, R.R., McIntosh, A., Meyer, Y.: L'intégrale de Cauchy définit un opérateur borné sur L2 pour les courbes Lipschitziennes. Ann. Math.116, 361–368 (1982)

    Google Scholar 

  4. Falconer, K.J.: The geometry of fractal sets, Cambridge University Press, 1985

  5. Federer, H.: Geometric measure theory. Berlin Heidelberg New York: Springer 1969

    Google Scholar 

  6. Garnett, J.B.: Analytic capacity and measure (Lect. Notes Math. vol. 297) Berlin Heidelberg New York: Springer 1972

    Google Scholar 

  7. Garnett, J.B.: Bounded analytic functions. Academic Press, 1981

  8. Jerison, D.S., Kenig, C.E.: Hardy spaces,A , and singular integrals on chord-arc domains. Math. Scand.50, 221–248 (1982)

    Google Scholar 

  9. Jones, P.W.: Square functions, Cauchy integrals, analytic capacity, and harmonic measure. (Lect. Notes Math, vol. 1384, pp. 24–68) Berlin Heidelberg New York: Springer 1989

    Google Scholar 

  10. Jones, P.W.: Lipschitz and bi-Lipschitz functions. Revista Ibero-Americana4, 155–121 (1988)

    Google Scholar 

  11. Jones, P.W., Murai, T.: Positive analytic capacity but zero Buffon needle probability. Pac. J. Math.133, 99–114 (1988)

    Google Scholar 

  12. Koosis, P.: Introduction to H p spaces. Lond. Math. Soc., Lecture Note Series, vol. 40, 1980

  13. Lawler, E.L.: The Traveling Salesman Problem. New York: Wiley-Interscience, 1985

    Google Scholar 

  14. Mattila, P.: Smooth maps, null-sets for integral geometric measure and analytic capacity. Ann. Math.123, 303–309 (1986)

    Google Scholar 

  15. Murai, T.: A real variable method for the Cauchy transform and analytic capacity. (Lect. Notes Math., vol. 1307) Berlin Heidelberg New York: Springer 1988

    Google Scholar 

  16. Pommerenke, Ch.: Univalent functions. Vanderhoeck and Ruprecht, Göttingen, 1975

    Google Scholar 

  17. Preparata, F.P., Shamos, M.I.: Computational Geometry. Berlin Heidelberg New York: Springer 1985

    Google Scholar 

Download references

Author information

Authors and Affiliations


Additional information

Oblatum 4-I-1990

Supported by NSF Grant DMS-86-02500

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, P.W. Rectifiable sets and the Traveling Salesman Problem. Invent Math 102, 1–15 (1990).

Download citation

  • Issue Date:

  • DOI: