Skip to main content
Log in

Sex difference in methylation of single-copy genes in human meiotic germ cells: Implications for X chromosome inactivation, parental imprinting, and origin of CpG mutations

  • Published:
Somatic Cell and Molecular Genetics

Abstract

To determine the methylation status of female germ cells in reference to the programmed reversal of X chromosome inactivation in these cells, we examined human fetal ovaries at developmental stages from the time germ cells initiate meiosis to when they cease to synthesize DNA (8–21 weeks gestation). Using methylation-sensitive restriction enzymes, we analyzed 57 MspI sites (32 sites in the CpG islands, and 25 nonclustered sites) from five X-linked housekeeping genes (HPRT, G6PD, P3, PGK, and GLA) and two tissue specific genes (X-linked F9 and autosomal EPO). Methylation patterns were compared to those of male germ cells, sperm, and somatic tissues of both sexes. All 32 MspI sites in CpG islands were unmethylated in germ-cell fractions of fetal ovary and adult testes, which could explain the reversibility of X inactivation in these tissues. However, whereas male meiotic germ cells were extensively methylated outside the islands (in the body of genes) and the methylation patterns resembled those of most somatic tissues, none of the 25 nonclustered CpGs was methylated in DNA contributed by the germ-cell component of fetal ovaries. The presence of faint MspI-like fragments in HpaII digests of fetal testes as well as fetal ovary prior to the onset of meiosis suggests that DNA of primordial germ cells is unmethylated in both sexes. Our observations of meiotic germ cells suggest that the female germ cells remain unmethylated, but that methylation in male germ cells occurs postnatally, prior to or during the early stages of spermatogenesis. In any event, the striking sex difference in methylation status of endogenous single-copy genes in meiotic germ cells could provide a molecular basis for parental imprinting of the mammalian genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Wolf, S.F., Jolly, D.J., Lunnen, K.D., Friedmann, T., and Migeon, B.R. (1984).Proc. Natl. Acad. Sci. U.S.A. 812806–2810.

    PubMed  Google Scholar 

  2. Wolf, S.F., Dintzis, S., Toniolo, D., Persico, G., Lunnen, K.D., Axelman, J., and Migeon, B.R. (1984).Nucleic Acids Res. 129333–9348.

    PubMed  Google Scholar 

  3. Keith, D.H., Singer-Sam, J., and Riggs, A.D. (1986).Mol. Cell. Biol. 64122–4125.

    PubMed  Google Scholar 

  4. Toniolo, D., Martini, G., Migeon, B.R., and R. Dono. (1988).EMBO J. 7401–406.

    PubMed  Google Scholar 

  5. Kaslow, D.C., and Migeon, B.R. (1987).Proc. Natl. Acad. Sci. U.S.A. 846210–6214.

    PubMed  Google Scholar 

  6. Lock, L.F., Takagi, N., and Martin, G.R. (1987).Cell 4839–46.

    PubMed  Google Scholar 

  7. Migeon, B.R., Wolf, S.F., Axelman, J., Kaslow, D.C. and Schmidt, M. (1985).Proc. Natl. Acad. Sci. U.S.A. 823390–3394.

    PubMed  Google Scholar 

  8. Yen, P.H., Patel, P., Chinault, A.C., Mohandas, T., and Shapiro, L.J. (1984).Proc. Natl. Acad. Sci. U.S.A. 811759–1763.

    PubMed  Google Scholar 

  9. Migeon, B.R., Schmidt, M., Axelman, J., and Ruta Cullen, C. (1986).Proc. Natl. Acad. Sci. U.S.A. 832182–2186.

    PubMed  Google Scholar 

  10. Gartler, S.M., Liskay, R.M., Campbell, B.K., Sparks, R., and Grant, N. (1972).Cell Differen. 1215–218.

    Google Scholar 

  11. Migeon, B.R., and Jelalian, K. (1977).Nature 269242–243.

    PubMed  Google Scholar 

  12. Kratzer, P.G., and Chapman, V.M. (1981).Proc. Natl. Acad. Sci. U.S.A. 783093–3097.

    PubMed  Google Scholar 

  13. Gill, P., Jeffreys, A.J., and Werrett, D.J. (1985).Nature 318577–579.

    PubMed  Google Scholar 

  14. Blandau, R.J., White, B.J., and Rumery, R.E. (1963).Fertil. Steril. 14482–489.

    PubMed  Google Scholar 

  15. Migeon, B.R., Jan de Beur, S., and Axelman, J. (1989).Exp. Cell Res. 182597–609.

    PubMed  Google Scholar 

  16. Alcalay, M., and Toniolo, D. (1988).Nucleic Acids Res. 169527–9543.

    PubMed  Google Scholar 

  17. Tsuji, S., Martin, B.M., Kaslow, D.C., Migeon, B.R., Choudary, P.V., Stubblefield, B.K., Mayor, J.A., Murrary, G.J., Barranger, J.A., and Ginns, E.I. (1987).Eur. J. Biochem. 165275–280.

    PubMed  Google Scholar 

  18. Bishop, D.F., Kornreich, R., and Desnick, R.J. (1988).Proc. Natl. Acad. Sci. U.S.A. 853903–3907.

    PubMed  Google Scholar 

  19. Anson, D.S., Choo, K.H., Rees, D.J.G., Gianelli, F., Gould, K., Huddleston, J.A., and Brownlee, G.G. (1984).EMBO. J. 31053–1060.

    PubMed  Google Scholar 

  20. Ruta Cullen, C., Hubberman, P., Kaslow, D.C., and Migeon, B.R. (1986).EMBO J. 92223–2229.

    Google Scholar 

  21. Semenza, G.L., Ladias, J.A.A., and Antonarakis, S.E. (1987).Nucleic Acids Res. 156768.

    PubMed  Google Scholar 

  22. Jacobs, K., Shoemaker, C., Rudersdorf, R., Neill, S.D., Kaufman, R.J., Mufson, A., Seehra, J., Jones, S.J., Hewick, R., Fritsch, E.F., Kawakita, M., Shimizu, T., and Miyake, T. (1985).Nature 313806–810.

    PubMed  Google Scholar 

  23. Baker, T.G. (1963).Proc. R. Soc. London B 158417–433.

    Google Scholar 

  24. Monk, M., and Harper, M.I. (1979).Nature 281311–313.

    PubMed  Google Scholar 

  25. Andina, R.J. (1978).Exp. Cell Res. 111211–218.

    PubMed  Google Scholar 

  26. Sanford, J.P., Clark, H.J., Chapman, V.M. and Rossant, J. (1987).Genes Dev. 11039–1046.

    PubMed  Google Scholar 

  27. Monk, M., Boubelik, M., and Lehnert, S. (1987).Development 99371–382.

    PubMed  Google Scholar 

  28. Singh, R.P., and Carr, D.H. (1966).Anat. Rec. 155369–384.

    PubMed  Google Scholar 

  29. Clement, P.B. (1987).Am. J. Surg. Pathol. 11277.

    PubMed  Google Scholar 

  30. Valdes-Dapena, M.A. (1967).Ann. N.Y. Acad. Sci. 142597–613.

    PubMed  Google Scholar 

  31. Skakkebaek, N.E., and Heller, C.G. (1973).J. Reprod. Fertil. 32379–386.

    PubMed  Google Scholar 

  32. Sanford, J.P., Forrester, L., Chapman, V., Chandley, A., and Hastie, N. (1984).Nucleic Acids Res. 122823–2836.

    PubMed  Google Scholar 

  33. McCarrey, J., and Thomas, K. (1987).Nature 326501–505.

    PubMed  Google Scholar 

  34. Groudine, M., and Conkin, K.F. (1985).Science 2281061–1068.

    PubMed  Google Scholar 

  35. Swain, J.L., Stewart, T.A., and Leder, P. (1987).Cell 50719–727.

    PubMed  Google Scholar 

  36. Sapienza, C., Paquette, J., Ivan, T.H., and Peterson, A. (1989).Development 107165–168.

    PubMed  Google Scholar 

  37. McLaren, A. (1988).Phil. Trans. R. Soc London B 3223–9.

    Google Scholar 

  38. McGrath, J., and Solter, D. (1984).Cell 37179–183.

    PubMed  Google Scholar 

  39. Surani, M.A.H., Barton, S.C., and Norris, M.L. (1984).Nature 308548–550.

    PubMed  Google Scholar 

  40. Cattanach, B.M., and Kirk, M. (1985).Nature 315496–498.

    PubMed  Google Scholar 

  41. Nicholls, R.D., Knoll, J.H.M., Butler, M.G., Karam, S., and Lalande, M. (1989).Nature 342281–285.

    PubMed  Google Scholar 

  42. Samollow, P.B., Ford, A.L., and VandeBerg, J.L. (1987).Genetics 115185–195.

    PubMed  Google Scholar 

  43. Silva, A.J., and White, R. (1988).Cell 54145–152.

    PubMed  Google Scholar 

  44. Cooper, D.N., and Youssoufian, H. (1988).Hum. Genet. 78151–155.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Driscoll, D.J., Migeon, B.R. Sex difference in methylation of single-copy genes in human meiotic germ cells: Implications for X chromosome inactivation, parental imprinting, and origin of CpG mutations. Somat Cell Mol Genet 16, 267–282 (1990). https://doi.org/10.1007/BF01233363

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01233363

Keywords

Navigation