Skip to main content
Log in

Genome regulation in mammalian cells

  • Published:
Somatic Cell and Molecular Genetics

Abstract

A theory is presented proposing that genetic regulation in mammalian cells is at least a two-tiered effect; that one level of regulation involves the transition between gene exposure and sequestration; that normal differentiation requires a different spectrum of genes to be exposed in each separate state of differentiation; that the fiber systems of the cell cytoskeleton and the nuclear matrix together control the degree of gene exposure; that specific phosphorylation of these elements causes them to assume a different organizational network and to impose a different pattern of sequestration and exposure on the elements of the genome; that the varied gene phosphorylation mechanisms in the cell are integrated in this function; that attachment of this network system to specific parts of the chromosomes brings about sequestration or exposure of the genes in their neighborhood in a fashion similar to that observed when microtubule elements attach through the kinetochore to the centromeric DNA; that one function of repetitive sequences is to serve as elements for the final attachment of this fibrous network to the specific chromosomal loci; and that at least an important part of the calcium manifestation as a metabolic trigger of different differentiation states involves its acting as a binding agent to centers of electronegativity, in particular proteins and especially phosphorylated groups, so as to change the conformation of the fiber network that ultimately controls gene exposure in the mammalian cell. It would appear essential to determine what abnormal gene exposures and sequestrations are characteristic of each type of cancer; which agonists, if any, will bring about reverse transformation; and whether these considerations can be used in therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Hsie, A.W., and Puck, T.T. (1971).Proc. Natl. Acad. Sci. U.S.A. 68358–361.

    PubMed  Google Scholar 

  2. Porter, K.R., Puck, T.T., Hsie, A.W., and Kelley, D. (1974).Cell 2145–162.

    PubMed  Google Scholar 

  3. Hsie, A.W., Jones, C., and Puck, T.T. (1971).Proc. Natl. Acad. Sci. U.S.A. 681648–1652.

    PubMed  Google Scholar 

  4. Puck, T.T., and Jones, C. (1973). InCyclic AMP, Cell Growth and the Immune Response (eds.) Braun, W., Lichtenstein, L.M. and Parker, C.W. (Springer-Verlag, New York) pp. 338–348.

    Google Scholar 

  5. Puck, T.T. (1976).Dev. Genet. 372–80.

    Google Scholar 

  6. Puck, T.T. (1977). InCancer Biology IV, Differentiation and Carcinogenesis (eds.) Borek, C., Fenoglio, C.M. and King, D.W. (Stratton Books, New York), pp. 4–17.

    Google Scholar 

  7. Puck, T.T. (1977). InEucaryotic Genetics System (eds.) Wilcox, G., Abelson, J. and Fox, C.F. (Academic Press, New York), pp. 399–411.

    Google Scholar 

  8. Puck, T.T. (1977).Proc. Natl. Acad. Sci. U.S.A. 744491–4495.

    PubMed  Google Scholar 

  9. Kao, F.T., Faik, P., and Puck, T.T. (1979).Exp. Cell Res. 12283–91.

    PubMed  Google Scholar 

  10. Meek, W., and Puck, T.T. (1979).J. Supramol. Struct. 12335–354.

    PubMed  Google Scholar 

  11. Meek, W.D., Porter, K.R., and Puck, T.T. (1980).Exp. Cell Res. 126359–374.

    PubMed  Google Scholar 

  12. Puck, T.T., Erikson, R.L., Meek, W.D., and Nielson, S.E. (1981).J. Cell. Physiol. 107399–412.

    PubMed  Google Scholar 

  13. Rumsby, G., and Puck, T.T. (1982).J. Cell. Physiol. 111133–139.

    PubMed  Google Scholar 

  14. Schonberg, S., Patterson, D., and Puck, T.T. (1983).Exp. Cell Res. 14557–62.

    PubMed  Google Scholar 

  15. Puck, T.T. (1984).Adv. Viral Oncol. 4197–216.

    Google Scholar 

  16. Ashall, F., and Puck, T.T. (1984).Proc. Natl. Acad. Sci. U.S.A. 815145–5149.

    PubMed  Google Scholar 

  17. Ashall, F., Sullivan, N., and Puck, T.T. (1988).Proc. Natl. Acad. Sci. U.S.A. 853908–3912.

    PubMed  Google Scholar 

  18. Chan, D., Goate, A., and Puck, T.T. (1989).Proc. Natl. Acad. Sci. U.S.A. 862747–2751.

    PubMed  Google Scholar 

  19. Puck, T.T. (1989). InA Memorial Colloquium Honoring Herbert L. Anderson, August 31, 1988 (ed.) Metropolis, N. (Los Alamos National Laboratory, Los Alamos, New Mexico), pp. 9–15.

    Google Scholar 

  20. Storrie, B. (1975).J. Cell Biol. 66392–403.

    PubMed  Google Scholar 

  21. Gabrielson, E.G., Scoggin, C., and Puck, T.T. (1982).Exp. Cell Res. 14263–68.

    PubMed  Google Scholar 

  22. Miranti, C., and Puck, T.T. (1990).Somat. Cell Mol. Genet. 1667–77.

    PubMed  Google Scholar 

  23. Puck, T.T. (1973). InThe Role of Cyclic Nucleotides in Carcinogenesis (eds.) Schultz, J. and Gratzner, H.G. (Academic Press, New York), pp. 283–302.

    Google Scholar 

  24. Puck, T.T. (1977). InThe Molecular Biology of the Mammalian Genetic Apparatus (ed.) Ts'o, P. (Elsevier North-Holland Biomedical Press, Amsterdam), pp. 171–180.

    Google Scholar 

  25. Bunn, P.A., Dienhart, D.G., Chan, D., Puck, T.T., Tagawa, M., Jewett, P.B., and Braunschweiger, E. (1990).Proc. Natl. Acad. Sci. U.S.A. 872162–2166.

    PubMed  Google Scholar 

  26. Nielson, S.E., and Puck, T.T. (1980).Proc. Natl. Acad. Sci. U.S.A. 77985–989.

    PubMed  Google Scholar 

  27. Johnson, G.S., Friedman, R.M., and Pastan, I. (1971).Proc. Natl. Acad. Sci. U.S.A. 68425–429.

    PubMed  Google Scholar 

  28. Puck, T.T., Erikson, R.L., Meek, W.D., and Nielson, S.E. (1981).J. Cell. Physiol. 107399–412.

    PubMed  Google Scholar 

  29. Huang, F.L., and Cho-Chung, Y.S. (1984).Biochem. Biophys. Res. Commun. 123141–147.

    PubMed  Google Scholar 

  30. Moore, E.E., Moritz, E.A., and Mitra, N.W. (1985).Cancer Res. 454387–4396.

    PubMed  Google Scholar 

  31. Krystosek, A., and Puck, T.T. (1989).J. Cell Biol. 109:231a.

    Google Scholar 

  32. Berridge, M.J., and Galione, A. (1988).FASEB J. 23074–3082.

    PubMed  Google Scholar 

  33. Georgatos, S.D., and Blobel, G. (1987).J. Cell Biol. 105105–115.

    PubMed  Google Scholar 

  34. Burridge, K., Fath, K., Kelly, T., Nuckolls, G., and Turner, C. (1988).Annu. Rev. Cell Biol. 4487–525.

    PubMed  Google Scholar 

  35. Burridge, K., and Fath, K. (1989).Bioessays 10104–108.

    PubMed  Google Scholar 

  36. Steinert, P.M., and Parry, D.A.D. (1985).Annu. Rev. Cell Biol. 141–65.

    PubMed  Google Scholar 

  37. Osborn, M., and Weber, K. (1982).Cell 31303–306.

    PubMed  Google Scholar 

  38. Maccioni, R.B. (1986).Revisiones Biol. Celular 81–103.

    Google Scholar 

  39. Worman, H.J., Lazaridis I., and Georgatos, S.D. (1988).J. Biol. Chem. 26312135–12141.

    PubMed  Google Scholar 

  40. Fey, E.G., and Penman, S. (1988).Proc. Natl. Acad. Sci. U.S.A. 85121–125.

    PubMed  Google Scholar 

  41. Georgatos, S.D., and Blobel, G. (1987).J. Cell Biol. 105117–125.

    PubMed  Google Scholar 

  42. Prescott, D.M., and Bender, M.A. (1962).Exp. Cell Res. 26260–268.

    PubMed  Google Scholar 

  43. Weintraub, H., and Groudine, M. (1976).Science 193848–856.

    PubMed  Google Scholar 

  44. Garel, A., and Axel, R. (1976).Proc. Natl. Acad. Sci. U.S.A. 733966–3970.

    PubMed  Google Scholar 

  45. Anderson, J.N., Vanderbilt, J.N., Lawson, G.M., Tsai, M.J., and O'Malley, B.W. (1983).Biochemistry 2221–29.

    PubMed  Google Scholar 

  46. Maschek, U., Pulm, W., Segal, S., and Hammerling, G.J. (1989).Mol. Cell. Biol. 93136–3142.

    PubMed  Google Scholar 

  47. Law, M.L., Gao, J., and Puck, T.T. (1989).Proc. Natl. Acad. Sci. U.S.A. 868472–8476.

    PubMed  Google Scholar 

  48. Berenblum, I. (1954).Cancer Res. 14471–477.

    PubMed  Google Scholar 

  49. Castagna, M., et al. (1982).J. Cell Biol. 2577847–7851.

    Google Scholar 

  50. Puck, T.T., Morkovin, D., Marcus, P.I., and Cieciura, S.J. (1957).J. Exp. Med. 106485–500.

    PubMed  Google Scholar 

  51. Huebner, K., Linnenbach, A., Weidner, S., Glenn, G., and Croce, C.M. (1981).Proc. Natl. Acad. Sci. U.S.A. 785701–5075.

    Google Scholar 

  52. Szabo, G., Damjanovich, S., Sumegi, J., and Klein, G. (1987).Exp. Cell Res. 169158–168.

    PubMed  Google Scholar 

  53. Cheung, W.Y. (1980).Science 20719–27.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puck, T.T., Krystosek, A. & Chan, D.C. Genome regulation in mammalian cells. Somat Cell Mol Genet 16, 257–265 (1990). https://doi.org/10.1007/BF01233362

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01233362

Keywords

Navigation