Skip to main content
Log in

Analysis of sequence specificity of 5-bromodeoxyuridine-induced reversion in cells containing multiple copies of a mutantgpt gene

  • Published:
Somatic Cell and Molecular Genetics

Abstract

For studies on molecular mechanisms of mutagenesis, it would be advantageous to transfer mutant genes with specific alterations into mammalian cells and use the transformed cells in reversion analyses. In the present paper, we describe an efficient method for analyzing reversion events occurring in cells that possess multiple copies of a mutational target gene. This method involves amplification of the chromosomally integrated target genes with the polymerase chain reaction (PCR) and restriction endonuclease digestion of the amplified product. Single reversion events that either create or destroy restriction endonuclease recognition sequences that encompass the site of the original mutation can be identified in a background of 10–20 copies of the gene that retain the mutant sequence. Using this method, we have analyzed revertants induced by 5-bromodeoxyuridine (BrdU) in a Chinese hamster ovary cell line that possesses multiple copies of a mutant bacterial gpt gene containing a specific alteration. The results of this study not only demonstrate the effectiveness of this method for analyzing reversion of a single gene copy in transfectants possessing multiple copies of a mutant target gene, but also demonstrate that the sequence specificity for BrdU-induced mutations is the same in Chinese hamster cells as previously observed with mouse cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Ashman, C.R., and Davidson, R.L. (1984).Mol. Cell. Biol. 42266–2272.

    PubMed  Google Scholar 

  2. Ashman, C.R., Jagadeeswaran, P., and Davidson, R.L. (1986).Proc. Natl. Acad. Sci. U.S.A. 833356–3360.

    PubMed  Google Scholar 

  3. Hauser, J., Seidman, M.M., Sidur, K., and Dixon, K. (1986).Mol. Cell. Biol. 6277–285.

    PubMed  Google Scholar 

  4. Lebkowski, J.S., Miller, J.H., and Calos, M.P. (1986).Mol. Cell. Biol. 61838–1842.

    PubMed  Google Scholar 

  5. DuBridge, R.B., Jang, P., Hsia, H.C., Leong, P.M., Miller, J.H., and Calos, M.P. (1987).Mol. Cell. Biol. 7379–387.

    PubMed  Google Scholar 

  6. Ashman, C.R., and Davidson, R.L. (1987).Proc. Natl. Acad. Sci. U.S.A. 843354–3358.

    PubMed  Google Scholar 

  7. Ashman, C.R., and Davidson, R.L. (1987).Somat. Cell Mol. Genet. 13563–568.

    PubMed  Google Scholar 

  8. Davidson, R.L., and Ashman, C.R. (1987).Somat. Cell Mol. Genet. 13415–417.

    PubMed  Google Scholar 

  9. Davidson, R.L., Broeker, P., and Ashman, C.R. (1988).Proc. Natl. Acad. Sci. U.S.A. 854406–4410.

    PubMed  Google Scholar 

  10. Gelbert, L.M., and Davidson, R.L. (1988).Proc. Natl. Acad. Sci. U.S.A. 859143–9147.

    PubMed  Google Scholar 

  11. Gelbert, L.M., Wilson, M.M., and Davidson, R.L. (1990).Somat. Cell Mol. Genet. 16173–184.

    PubMed  Google Scholar 

  12. Kresnak, M.T., and Davidson, R.L. (1991).Somat. Cell Mol. Genet. 17399–410.

    PubMed  Google Scholar 

  13. Kresnak, M.T., and Davidson, R.L. (1992).Proc. Natl. Acad. Sci. U.S.A. (in press).

  14. Davidson, R.L., and Gerald, P.S. (1976).Somat. Cell Genet. 2165–176.

    PubMed  Google Scholar 

  15. Hirt, B. (1967).J. Mol. Biol. 26365–369.

    PubMed  Google Scholar 

  16. Hanahan, D. (1983).J. Mol. Biol. 166557–580.

    PubMed  Google Scholar 

  17. Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989).Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York).

    Google Scholar 

  18. Engelke, D.R., Hoener, P.A., and Collins, F.S. (1988).Proc. Natl. Acad. Sci. U.S.A. 85544–548.

    PubMed  Google Scholar 

  19. Innis, M.A., Myambo, K.B., Gelfand, D.H., and Brow, M.A.D. (1988).Proc. Natl. Acad. Sci. U.S.A. 859436–9440.

    PubMed  Google Scholar 

  20. Mihovilovic, M., and Lee, J.E. (1989).Biotechniques 714–16.

    PubMed  Google Scholar 

  21. Winship, P.R. (1989).Nucleic Acids Res. 171266.

    PubMed  Google Scholar 

  22. Skopek, T.R., and Hutchinson, F. (1982).J. Mol. Biol. 15919–33.

    PubMed  Google Scholar 

  23. Lasken, R.S., and Goodman, M.F. (1985).Proc. Natl. Acad. Sci. U.S.A. 821301–1305.

    PubMed  Google Scholar 

  24. Muller, M., Martial, J., and Verly, W.G. (1988).J. Biochem. 253637–643.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rotstein, J.B., Kresnak, M.T., Samadashwily, G.M. et al. Analysis of sequence specificity of 5-bromodeoxyuridine-induced reversion in cells containing multiple copies of a mutantgpt gene. Somat Cell Mol Genet 18, 179–188 (1992). https://doi.org/10.1007/BF01233163

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01233163

Keywords

Navigation