Somatic Cell and Molecular Genetics

, Volume 18, Issue 2, pp 113–122 | Cite as

Gene expression in ataxia telangiectasia cells as perturbed by bleomycin treatment

  • Asao Noda


The autosomal recessive genetic disorder ataxia telangiectasia (AT) has been characterized in the RNA transcripts of cultured cells. Molecular species of poly (A) + RNA that are present in AT fibroblasts (ATFs) at levels different from those in normal human fibroblasts (NHFs) were cloned in the form of cDNAs. Treatment with bleomycin, which transiently inhibits DNA synthesis in NHFs but not in ATFs, differentiated ATFs and NHFs in the above cloning. Two cDNA clones with an identical DNA sequence were isolated, the corresponding RNA transcript of which was induced approximately twofold after bleomycin treatment in NHFs, but not in ATFs. The DNA sequence of these two cDNA clones, except for its polyadenylation part, was identical to the heavy-strand replication origin sequence of human mitochondrial DNA. The results indicate the possibility that the induction of this RNA transcript is involved in bleomycin-induced inhibition of DNA synthesis in normal human cells, while it is defective in AT cells. In addition, the previous observation that much fibronectin is produced in AT cells was confirmed in this study in terms of RNA transcription.


cDNA Clone Bleomycin Replication Origin Ataxia Telangiectasia Ataxia Telangiectasia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    Bridges, B.A., and Harnden, D.G. (eds.) (1982).Ataxia-telangiectasia (John Wiley & Sons, London), 402 pp.Google Scholar
  2. 2.
    Jaspers, N.G.J., and Bootsma, D. (1982).Proc. Natl. Acad. Sci. U.S.A. 792641–2644.PubMedGoogle Scholar
  3. 3.
    Murnane, J.P., and Painter, R.B. (1982).Proc. Natl. Acad. Sci. U.S.A. 791960–1963.PubMedGoogle Scholar
  4. 4.
    Taylor, A.M.R. (1978).Mutat. Res. 50407–418.PubMedGoogle Scholar
  5. 5.
    Taylor, A.M.R., Rosney, C.M., and Campbell, J.B. (1979).Cancer Res. 391046–1050.PubMedGoogle Scholar
  6. 6.
    Painter, R.B., and Young, B.R. (1980).Proc. Natl. Acad. Sci. U.S.A. 777315–7317.PubMedGoogle Scholar
  7. 7.
    Cramer, P., and Painter, R.B. (1981).Nature 291671–672.PubMedGoogle Scholar
  8. 8.
    Ockey, C.H. (1983).Radiat. Res. 94427–438.PubMedGoogle Scholar
  9. 9.
    Noda, A. (1988).Cell Biol. Int. Rep. 12943–950.PubMedGoogle Scholar
  10. 10.
    Painter, R.B. (1981).Mutat. Res. 84183–190.PubMedGoogle Scholar
  11. 11.
    Noda, A., and Matsumura, T. (1990). InAntimutagenesis and Anticarcinogenesis Mechanisms II (eds.) Kuroda, Y., Shankel, D.M., and Waters, M.D. (Plenum Press, New York), pp. 355–359.Google Scholar
  12. 12.
    Nichols, W.W., Murphy, D.G., Cristofalo, V.J., Toji, L.H., Greene, A.E., and Dwight, S.A. (1977).Science 19660–63.PubMedGoogle Scholar
  13. 13.
    Ikenaga, M., Midorikawa, M., Abe, J., and Mimaki, T. (1983).Jpn. J. Hum. Genet. 281–10.Google Scholar
  14. 14.
    Arlett, C.F., and Harcourt, S.A. (1980).Cancer Res. 40926–932.PubMedGoogle Scholar
  15. 15.
    Arita, I., Tatsumi, K., Tachibana, A., Toyoda, M., and Takebe, H. (1988).Mutat. Res. 208167–172.PubMedGoogle Scholar
  16. 16.
    Kaplan, B.B., Bernstein, S.L., and Gioio, A.E. (1979).Biochem. J. 183181–184.PubMedGoogle Scholar
  17. 17.
    D'Alessio, J.M., Noon, M.C., Ley, H.L., III, and Gerard, G.F. (1987).BRL Focus 91–4.Google Scholar
  18. 18.
    Woods, D. (1984).BRL Focus 61–3.Google Scholar
  19. 19.
    Maniatis, T., Fritsch, E.F., and Sambrook, J. (1982).Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Press, Cold Spring Harbor, New York), 545 pp.Google Scholar
  20. 20.
    Sargent, T.D. (1987).Methods Enzymol. 152423–431.PubMedGoogle Scholar
  21. 21.
    Nakajima-Iijima, S., Hamada, H., Reddy, P., and Kakunaga, T. (1985).Proc. Natl. Acad. Sci. U.S.A. 826133–6137.PubMedGoogle Scholar
  22. 22.
    Anderson, S., Bankier, A.T., Barrell, B.G., De Bruijin, M.H.L., Coulson, A.R., Drouin, J., Eperon, I.C., Nierlich, D.P., Roe, B.A., Sanger, F., Schreier, P.H., Smith, A.J.H., Staden, R., and Young, I.G. (1981).Nature 290457–465.PubMedGoogle Scholar
  23. 23.
    Chang, D.D., and Clayton, D.A. (1985).Proc. Natl. Acad. Sci. U.S.A. 82351–355.PubMedGoogle Scholar
  24. 24.
    Crews, S., Ojala, D., Posakony, J., Nishiguchi, J., and Attardi, G. (1979).Nature 277192–198.PubMedGoogle Scholar
  25. 25.
    Kornblihtt, A.R., Umezawa, K., Vibe-Pedersen, K., and Baralle, F.E. (1985).EMBO J. 41755–1759.PubMedGoogle Scholar
  26. 26.
    Murnane, J.P., and Painter, R.B. (1983).Biochemistry 221217–1222.PubMedGoogle Scholar
  27. 27.
    Houldsworth, J., and Lavin, M.F. (1980).Nucleic Acids Res. 83709–3720.PubMedGoogle Scholar
  28. 28.
    Ojala, D., Crews, S., Montoya, J., Gelfand, R., and Attardi, G. (1981).Mol. Biol. 150303–314.Google Scholar
  29. 29.
    Chang, D.D., and Clayton, D.A. (1989).Cell 56131–139.PubMedGoogle Scholar
  30. 30.
    Montoya, J., Ojala, D., and Attardi, G. (1981).Nature 290465–470.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Asao Noda
    • 1
  1. 1.Research Division for Cellular RegulationMeiji Cell Technology CenterOdawaraJapan

Personalised recommendations