Skip to main content
Log in

Expression of a human cDNA encoding a protein containing GAR synthetase, AIR synthetase, and GAR transformylase corrects the defects in mutant Chinese hamster ovary cells lacking these activities

  • Published:
Somatic Cell and Molecular Genetics

Abstract

The isolation of a human cDNA encoding the multifunctional protein containing GAR synthetase, AIR synthetase, and GAR transformylase by functional complementation of purine auxotrophy in yeast has been reported. Chinese hamster ovary (CHO) cell mutant purine auxotrophs deficient in GAR synthetase (AdeC) or AIR synthetase plus GAR transformylase (AdeG) activities were transfected with this human GART cDNA subcloned into a mammalian expression vector. This restored 49–140% of the activities of GAR synthetase, AIR synthetase, and GAR transformylase in transfected cells when compared to wild-type CHO K1 parental cells. Study of one stably expressing transfectant, AdeC2, revealed that the human GART cDNA was incorporated into the CHO genome. The enzyme activities appear to be associated with an expressed protein of 110 kDa, very similar to that of purified human GART trifunctional enzyme. The AdeC mutant shows reduced amounts of GART mRNA compared to CHO K1 and a protein of apparently reduced size, results consistent with the purine requirement and enzyme deficiency observed in the mutant. These experiments provide definitive evidence that the human GART cDNA encodes and can direct the production of active human GART trifunctional protein in mammalian cells. They also provide important evidence that the AdeC and AdeG mutants of CHO cells are defective in this gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Henikoff, S., Tatchell, K., Hall, B.D., and Nasmyth, K.A. (1981).Nature (London) 28933–37.

    PubMed  Google Scholar 

  2. Henikoff, S., Keene, M.A., Sloan, J.S., Bleskan, J., Hards, R., and Patterson, D. (1986).Proc. Natl. Acad. Sci. U.S.A. 83720–724.

    PubMed  Google Scholar 

  3. Henikoff, S., and Eghtedarzadeh, M.K. (1987).Genetics 117711–725.

    PubMed  Google Scholar 

  4. Henikoff, S. (1986).J. Mol. Biol. 190519–528.

    PubMed  Google Scholar 

  5. White, J.H., Lusnak, K., and Fogel, S. (1985).Nature (London) 315350–352.

    PubMed  Google Scholar 

  6. Daubner, S.C., Schrimsher, J.L., Schendel, J., Young, M., Henikoff, S., Patterson, D., Stubbe, J., and Benkovic, S.J. (1985).Biochemistry 247059–7062.

    PubMed  Google Scholar 

  7. Daubner, S.C., Young, M., Sammons, R.D., Courtney, L.F., and Benkovic, S.J. (1986).Biochemistry 252951–2957.

    PubMed  Google Scholar 

  8. Schild, D., Brake, A.J., Kiefer, M.C., Young, D., and Barr, P.J. (1990).Proc. Natl. Acad. Sci. U.S.A. 872916–2920.

    PubMed  Google Scholar 

  9. Aimi, J., Qui, H., Williams, J., Zalkin, H., and Dixon, J.E. (1989).Nucleic Acids Res. 186665–6672.

    Google Scholar 

  10. Hards, R.G., Benkovic, S.J., Van Keuren, M.L., Graw, S.L., Drabkin, H.A., and Patterson, D. (1986).Am. J. Hum. Genet. 39179–185.

    PubMed  Google Scholar 

  11. Patterson, D., Graw, S., and Jones, C. (1981).Proc. Natl. Acad. Sci. U.S.A. 78405–409.

    PubMed  Google Scholar 

  12. Pant, S.S., Moser, H.W., and Krane, S.M. (1968).J. Clin. Endocrinol. 28472–477.

    Google Scholar 

  13. Patterson, D., Jones, C., Scoggin, C., Miller, Y.E., and Graw, S. (1982).Ann. N.Y. Acad. Sci. 39669–81.

    PubMed  Google Scholar 

  14. Ellis, L., Clauser, E., Morgan, D.O., Edery, M., Roth, R.A., and Rutter, W.J. (1986).Cell 45721–732.

    PubMed  Google Scholar 

  15. Southern, P.J., and Berg, P. (1982).J. Mol. Appl. Genet. 1327–341.

    PubMed  Google Scholar 

  16. Maniatis, T., Fritsch, E.F., and Sambrook, H.J. (1982). InMolecular Cloning: A Laboratory Manual, (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York).

    Google Scholar 

  17. Southern, E.M. (1975).J. Mol. Biol. 98503–517.

    Google Scholar 

  18. Feinberg, A.P., and Vogelstein, B. (1983).Anal. Biochem. 1326–13.

    PubMed  Google Scholar 

  19. Cathala, G., Savouret, J.F., Mendez, B., West, B.L., Karin, M., Martial, J.A., and Baxter, J.D. (1983).DNA 2329–335.

    PubMed  Google Scholar 

  20. Thomas, P.S. (1980).Proc. Natl. Acad. Sci. USA 775201–5205.

    PubMed  Google Scholar 

  21. Chang, F.-H., and Bourne, H.R. (1987).Endocrinology 1211711–1715.

    PubMed  Google Scholar 

  22. Kleid, D.G., Yansura, D., Small, B., Dowbenko, D., Moore, D.M., Grubman, M.J., McKercher, P.D., Morgan, D.O., Robertson, B.H., and Bachrach, H.L. (1981).Science 2141125–1129.

    PubMed  Google Scholar 

  23. Laemmli, U.K. (1970).Nature 227680–685.

    PubMed  Google Scholar 

  24. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951).J. Biol. Chem. 193265–275.

    PubMed  Google Scholar 

  25. Salinovich, O., and Montelaro, R.C. (1986).Anal. Biochem. 156341–347.

    PubMed  Google Scholar 

  26. Chang, F.-H., and Bourne, H.R. (1989).J. Biol. Chem. 2645352–5357.

    PubMed  Google Scholar 

  27. Hards, R.G., and Patterson, D. (1986).Enzyme 35117–126.

    PubMed  Google Scholar 

  28. Young, M., Sammons, R.D., Mueller, W.T., and Benkovic, S.J. (1984).Biochemistry 233979–3986.

    PubMed  Google Scholar 

  29. Scoggin, C.H., Bleskan, J., Davidson, J.N., and Patterson, D. (1980).Clin. Res. 28:31A.

    Google Scholar 

  30. Lai, L.W., Hart, I., and Patterson, D. (1991).Genomics 9322–328.

    PubMed  Google Scholar 

  31. Hards, R.G., and Patterson, D. (1986).Mech. Age. Devel. 665–70.

    Google Scholar 

  32. Bradley, C.M., Patterson, D., and Robinson, A. (1988).Trisomy 21 141–51.

    Google Scholar 

  33. Bartley, J.A., and Epstein, C.J. (1980).Biochem. Biophys. Res. Commun. 931286–1289.

    PubMed  Google Scholar 

  34. Davidson, J.N., and Patterson, D. (1979).Proc. Natl. Acad. Sci. U.S.A. 761731–1735.

    PubMed  Google Scholar 

  35. Patterson, D., Meinkoth, J., Wahl, G., Vannais, D., Niswander, L., and Davidson, J. (1985).Genetics 110538–539.

    Google Scholar 

  36. Patterson, D., Barton, J., Lai, L.W., and Chang, F.H. (1990). Vth International Congress, Inborn Errors of Metabolism, Pacific Grove, California, June 1–5, p. P52.

  37. Henikoff, S. (1987).Bioessays 68–13.

    PubMed  Google Scholar 

  38. Davidson, J.N., and Patterson, D. (1984).DNA 378.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, FH., Barnes, T.S., Schild, D. et al. Expression of a human cDNA encoding a protein containing GAR synthetase, AIR synthetase, and GAR transformylase corrects the defects in mutant Chinese hamster ovary cells lacking these activities. Somat Cell Mol Genet 17, 411–420 (1991). https://doi.org/10.1007/BF01233066

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01233066

Keywords

Navigation