Skip to main content
Log in

Boundary-value problems for two-dimensional canonical systems

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

The two-dimensional canonical systemJy′=−ℓHy where the nonnegative Hamiltonian matrix functionH(x) is trace-normed on (0, ∞) has been studied in a function-theoretic way by L. de Branges in [5]–[8]. We show that the Hamiltonian system induces a closed symmetric relation which can be reduced to a, not necessarily densely defined, symmetric operator by means of Kac' indivisible intervals; of. [33], [34]. The “formal” defect numbers related to the system are the defect numbers of this reduced minimal symmetric operator. By using de Branges' one-to-one correspondence between the class of Nevanlinna functions and such canonical systems we extend our canonical system from (0, ∞) to a trace-normed system onℜ which is in the limit-point case at ±∞. This allows us to study all possible selfadjoint realizations of the original system by means of a boundaryvalue problem for the extended canonical system involving an interface condition at 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.I. Achieser,The classical moment problem and some related questions in analysis, Fizmatgiz, Moscow, 1961 (Russian) (English translation: Oliver and Boyd, Edinburgh, and Hafner, New York, 1965).

    Google Scholar 

  2. N.I. Achieser and I.M. Glasmann,Theorie der linearen Operatoren im Hilbertraum, 8th edition, Akademie Verlag, Berlin, 1981.

    Google Scholar 

  3. D.Z. Arov and H. Dym, “J-inner matrix functions, interpolation and inverse problems for canonical systems, I: Foundations”, Integral Equations Operator Theory, 29 (1997), 373–454.

    Google Scholar 

  4. F.V. Atkinson,Discrete and continuous boundary problems, Academic Press, New York, 1968.

    Google Scholar 

  5. L. de Branges, “Some Hilbert spaces of entire functions”, Trans. Amer. Math. Soc., 96(1960), 259–295.

    Google Scholar 

  6. L. de Branges “Some Hilbert spaces of entire functions II”, Trans. Amer. Math. Soc. 99 (1961), 118–152.

    Google Scholar 

  7. L. de Branges, “Some Hilbert spaces of entire functions III”, Trans. Amer. Math. Soc., 100 (1961), 73–115.

    Google Scholar 

  8. L. de Branges, “Some Hilbert spaces of entire functions IV”, Trans. Amer. Math. Soc., 105 (1962), 43–83.

    Google Scholar 

  9. E.A. Coddington and N. Levinson, “On the nature of the spectrum of singular second order linear differential equations”, Canadian J. Math. 3 (1951), 335–338.

    Google Scholar 

  10. V. A. Derkach and M. M. Malamud, “Generalized resolvents and the boundary value problems for hermitian operators with gaps”, J Functional Analysis, 95 (1991), 1–95.

    Google Scholar 

  11. V.A. Derkach and M.M. Malamud, “The extension theory of hermitian operators and the moment problems” J. Math. Sciences 73 (1995), 141–242.

    Google Scholar 

  12. A. Dijksma, H. Langer and H.S.V. de Snoo, “Symmetric Sturm-Liouville operators with eigenvalue depending boundary conditions”, Can. Math. Soc. Conference Proc., 8 (1987), 87–116.

    Google Scholar 

  13. A. Dijksma, H. Langer, and H.S.V. de Snoo, “Hamiltonian systems with eigenvalue depending boundary conditions”, Operator Theory: Adv. Appl. 35 (1988), 37–83.

    Google Scholar 

  14. A. Dijksma, H. Langer, and H.S.V. de Snoo, “Eigenvalues and pole functions of Hamiltonian systems with eigenvalue depending boundary conditions”, Math. Nachr., 161 (1993), 107–154.

    Google Scholar 

  15. H. Dym and H.P. McKean,Gaussian processes, function theory, and the inverse spectral theorem, Academic Press, New York, 1976.

    Google Scholar 

  16. R.C. Gilbert, “Simplicity of linear ordinary differential operators”, J. Differential Equations, 11 (1972), 672–681.

    Google Scholar 

  17. I.C. Gohberg and M.G. KreįnTheory and applications of Volterra operators in Hilbert space, Nauka, Moscow (1967) (Russian) (English translation: Transl. Math. Monographs 24, Amer. Math. Soc., 1970)

    Google Scholar 

  18. S. Hassi, M. Kaltenbäck, and H.S.V. de Snoo, “Triplets of Hilbert spaces and Friedrichs extensions associated with the subclass N1 of Nevanlinna functions”, J. Operator Theory, 37 (1997), 155–181.

    Google Scholar 

  19. S. Hassi, M. Kaltenbäck, and H.S.V. de Snoo, “The sum of matrix Nevanlinna functions and selfadjoint extensions in exit spaces”, Operator Theory: Adv. Appl., 103 (1998), 137–154.

    Google Scholar 

  20. S. Hassi, M. Kaltenbäck, and H.S.V. de Snoo, “Selfadjoint extensions of the orthogonal sum of symmetric relations, l”, 16th OT Conference Proc., (1997), 163–178.

  21. S. Hassi, M. Kaltenbäck, and H.S.V. de Snoo, “Selfadjoint extensions of the orthogonal sum of symmetric relations, II”, Operator Theory: Adv. Appl. 106 (1998), 187–200.

    Google Scholar 

  22. S. Hassi, M. Kaltenbäck, and H.S.V. de Snoo, “Generalized finite rank perturbations associated to Kac classes of matrix Nevanlinna functions”, (in preparation).

  23. S. Hassi, H. Langer, and H.S.V. de Snoo, “Selfadjoint extensions for a class of symmetric operators with defect numbers (1,1)”, 15th OT Conference Proc., (1995), 115–145.

  24. S. Hassi, C. Remling, and H.S.V. de Snoo, “Subordinate solutions and spectral measures of canonical systems”, Integral Equations Operator Theory, (to appear).

  25. S. Hassi, H.S.V. de Snoo, and A.D.I. Willemsma, “Smooth rank one perturbations of selfadjoint operators”, Proc. Amer. Math. Soc., 126 (1998), 2663–2675.

    Google Scholar 

  26. D.B. Hinton and A. Schneider, “On the Titchmarsh-Weyl coefficients for singularS-Hermitian systems I”, Math. Nachr., 163 (1993), 323–342.

    Google Scholar 

  27. D.B. Hinton and A. Schneider, “On the Titchmarsh-Weyl coefficients for singularS-Hermitian systems II”, Math. Nachr., 185 (1997), 67–84.

    Google Scholar 

  28. D.B. Hinton and J.K. Shaw, “On Titchmarsh-WeylM(λ)-functions for linear Hamiltonian systems”, J. Differential Equations 40, (1981), 316–342.

    Google Scholar 

  29. D.B. Hinton and J.K. Shaw, “Hamiltonian systems of limit point or limit circle type with both endpoints singular”, J. Differential Equations 50, (1983), 444–464.

    Google Scholar 

  30. I.S. Kac, “On the Hilbert spaces, generated by monotone Hermitian matrix functions”, (Russian) Kharkoy, Zap. Mat. o-va, 22 (1950), 95–113.

    Google Scholar 

  31. I.S. Kac, “On the multiplicity of the spectrum of a second-order differential operator”, Dokl. Akad. Nauk. SSSR Ser. Mat., 145 (1962), 510–514 (Russian) (English translation: Sov. Math., 3 (1962), 1035–1039).

    Google Scholar 

  32. I.S. Kac, “Spectral multiplicity of a second-order differential operator and expansion in eigenfunctions”, (Russian) Izv. Akad. Nauk. SSSR Ser. Mat., 27 (1963), 1081–1112.

    Google Scholar 

  33. I.S. Kac, “Linear relations, generated by a canonical differential equation on an interval with a regular endpoint, and expansibility in eigenfunctions”, (Russian), Deposited in Ukr NIINTI, No. 1453, 1984. (VINITI Deponirovannye Nauchnye Raboty, No. 1 (195), b. o. 720, 1985).

  34. I.S. Kac, “Expansibility in eigenfunctions of a canonical differential equation on an interval with singular endpoints and associated linear relations”, (Russian), Deposited in Ukr NIINTI, No. 2111, 1986. (VINITI Deponirovannye Nauchnye Raboty, No. 12 (282), b.o. 1536, 1986).

  35. I.S. Kac and M.G. Kreîn, “On the spectral functions of the string”, Supplement II to the Russian edition of F.V. Atkinson,Discrete and continuous boundary problems, Mir, Moscow, 1968 (Russian) (English translation: Amer. Math. Soc. Transl., (2) 103 (1974), 19–102).

    Google Scholar 

  36. M.G. Kreîn, “On the indeterminate case of the Sturm-Liouville boundary value problem in the interval (0, ∞)”, (Russian), Izv. Akad. Nauk SSSR Ser. Mat., 16 (1952), 293–324.

    Google Scholar 

  37. M.G. Kreîn and H. Langer, “Continuation of Hermitian positive definite functions and related questions”, unpublished manuscript.

  38. V.I. Kogan and F.S. Rofe-Beketov, “On square-integrable solutions symmetric systems of differential equations of arbitrary order”, Proc. Roy. Soc. Edinburgh Sect. A, 74 (1976), 5–40.

    Google Scholar 

  39. H. Langer and H. Winkler, “Direct and inverse spectral problems for generalized strings”, Integral Equations Operator Theory, 30 (1998), 409–431.

    Google Scholar 

  40. B.C. Orcutt,Canonical differential equations, Doctoral dissertation, University of Virginia, 1969.

  41. L.A. Sakhnovich, “The method of operator identities and problems in analysis”, Algebra and Analysis, 5 (1993), 4–80.

    Google Scholar 

  42. A.V. Štrauss, “On the extensions of symmetric operators depending on a parameter”, Izv. Akad. Nauk SSSR, Ser. Mat., 29 (1965), 1389–1416 (Russian) (English translation: Amer. Math. Soc. Transl. (2) 61 (1967), 113–141).

    Google Scholar 

  43. A.V. Štrauss, “Extensions and generalized resolvents of a symmetric operator which is not densely defined”, Izv. Akad. Nauk SSSR, Ser. Mat., 34 (1970), 175–202 (Russian) (English translation: Math. USSR-Izvestija, 4 (1970), 179–208).

    Google Scholar 

  44. E.C. Titchmarsh,Eigenfunction expansions associated with second-order differential equations, Part One, second edition, Oxford University Press, Oxford, 1962.

    Google Scholar 

  45. H. Weyl, “Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willküricher Funktionen”, Math. Ann., 68 (1910), 220–269.

    Google Scholar 

  46. H. Winkler,Zum inversen Spektralproblem für zweidimensionale kanonische Systeme, Doctoral dissertation, Technische Universität Wien, 1993.

  47. H. Winkler, “The inverse spectral problem for canonical systems”, Integral Equations Operator Theory, 22 (1995), 360–374.

    Google Scholar 

  48. H. Winkler, “On transformations of canonical systems”, Operator Theory: Adv. Appl., 80 (1995), 276–288.

    Google Scholar 

  49. H. Winkler, “Spectral estimations for canonical systems”, Math. Nachr., (to appear).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hassi, S., de Snoo, H. & Winkler, H. Boundary-value problems for two-dimensional canonical systems. Integr equ oper theory 36, 445–479 (2000). https://doi.org/10.1007/BF01232740

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01232740

AMS Classification numbers

Navigation