Skip to main content
Log in

Discrete decomposability of the restriction ofA q(λ) with respect to reductive subgroups and its applications

  • Published:
Inventiones mathematicae Aims and scope

Summary

LetG′⊂G be real reductive Lie groups and q a θ-stable parabolic subalgebra of Lie (G) ⊗ ℂ. This paper offers a sufficient condition on (G, G′, q) that the irreducible unitary representation\(\mathop {A_q }\limits^--- \) ofG with non-zero continuous cohomology splits into a discrete sum of irreducible unitary representations of a subgroupG′, each of finite multiplicity. As an application to purely analytic problems, new results on discrete series are also obtained for some pseudo-Riemannian (non-symmetric) spherical homogeneous spaces, which fit nicely into this framework. Some explicit examples of a decomposition formula are also found in the cases whereA q is not necessarily a highest weight module.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [A1] Adams, J.: Discrete spectrum of the dual reductive pair (O(p, q), Sp(2m)). Invent. Math.74, 449–475 (1984)

    Google Scholar 

  • [A2] Adams, J.: Unitary highest weight modules. Adv. Math.63, 113–137 (1987)

    Google Scholar 

  • [Bo] Borel, A.: Some remarks about Lie groups transitive on spheres and tori. Bull.Am. Math. Soc.55, 580–587 (1949)

    Google Scholar 

  • [BoW] Borel, A., Wallach, N.: Continuous cohomology, discrete subgroups, and representations of reductive groups. Princeton: Princeton University Press 1980

    Google Scholar 

  • [Br] Brion, M.: Classification des espaces homogenes spheriques. Compos. Math.63-2, 189–208 (1987)

    Google Scholar 

  • [C] Chang, J.T.: Remarks on localization and standard modules: The duality theorem on a generalized flag variety. Proc. Am. Math. Soc.117, 585–591 (1993)

    Google Scholar 

  • [EPWW] Enright, T.J., Parthasarathy, R., Wallach, N.R., Wolf, J.A.: Unitary derived functor module with small spectrum. Acta. Math.154, 105–136 (1985)

    Google Scholar 

  • [FJ] Flensted-Jensen, M.: Analysis on Non-Riemannian Symmetric Spaces. (Conf. Board, vol. 61) Providence, RI: Am. Math. Soc. 1986

    Google Scholar 

  • [GG] Gelfand, I.M., Graev, M.I.: Geometry of homogeneus spaces, representations of groups in homogeneous spaces, and related questions of integral geometry. Transl., II. Ser., Am. Math. Soc.37, 351–429 (1964)

    Google Scholar 

  • [GGP] Gelfand, I.M., Graev, M.I., Piatecki-Ŝapiro, I.: Representation theory and automorphic functions, Phiadelphia: Saunders 1969

    Google Scholar 

  • [HMSW] Hecht, H., Miličic, D., Schmid, W., Wolf, J.A.: Localization and standard modules for real semisimple Lie groups. Invent. Math.90, 297–332 (1987)

    Google Scholar 

  • [HS] Hecht, H., Schmid, W.: A proof of Blattner's conjecture. Invent. Math.31, 129–154 (1976)

    Google Scholar 

  • [He] Helgason, S.: Differential geometry, Lie groups and symmetric spaces. (Pure Appl. Math., vol. 80) New York London: Academic Press, 1978

    Google Scholar 

  • [Ho] Howe, R.: θ-series and invariant theory. In: Borel, A., Casselman, W. (eds.) Automorphic forms, representations and L-functions. (Proc. Symp. Pure Math., vol. 33, pp. 275–285) Providence, RI: Am. Math. Soc. 1979

    Google Scholar 

  • [HT] Howe, R., Tan, E.: Homogeneous functions on light cones: The infinitesimal structures of some degenerate principal series representations. Bull. Am. Math. Soc.28, 1–74 (1993)

    Google Scholar 

  • [J] Jakobsen, H.P.: Tensor products, reproducing kernels, and power series. J. Funct. Anal.31, 293–305 (1979)

    Google Scholar 

  • [JV] Jakobsen, H.P., Vergne, M.: Restrictions and expansions of holomorphic representations. J. Funct. Anal.34, 29–53 (1979)

    Google Scholar 

  • [KV] Kashiwara, M., Vergne, M.: On the Segal-Shale-Weil representations and harmonic polynomials. Invent. Math.44, 1–47 (1978)

    Google Scholar 

  • [Ko1] Kobayashi, T.: Proper action on a homogeneous space of reductive type. Math. An.,285, 249–263 (1989)

    Google Scholar 

  • [Ko2] Kobayashi, T.: Unitary representations realized in L2-sections of vector bundles over semisimple symmetric spaces. In: Proceedings at the 27-th. Symp. of Functional Analysis and Real Analysis, pp. 39–54 (in Japanese). Math. Soc. Japan 1989

  • [Ko3] Kobayashi, T.: Singular Unitary Representations and Discrete Series for Indefinite Stiefel Manifolds\(U(p,q; \mathbb{F})/U(p - m,q; \mathbb{F})\). Mem. Am. Math. Soc.462 (1992)

  • [Ko4] Kobayashi, T.: Discrete decomposability of the restriction ofA g(λ) with respect to reductive subgroups. II. Classification for classical symmetric pairs. (in preparation)

  • [Kr1] Krämer, M.: Multilicity free subgroups of compact connected Lie groups. Arch. Math.27, 28–35 (1976)

    Google Scholar 

  • [Kr2] Krämer, M.: Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen. Compos. Math.38-2, 129–153 (1979)

    Google Scholar 

  • [L] Lipsman, R.: Restrictions of principal series to a real form. Pac. J. Math.89, 367–390 (1980)

    Google Scholar 

  • [M] Martens, S.: The characters of the holomorphic discrete series. Proc. Natl. Acad. Sci. USA72, 3275–3276 (1975)

    Google Scholar 

  • [MO1] Matsuki, T., Oshima, T.: A description of discrete series for semisimple symmetric spaces. Adv. Stud. Pure Math.4, 331–390 (1984)

    Google Scholar 

  • [MO2] Matsuki, T., Oshima, T.: Embeddings of discrete series into principal series In: Dulfo, M. et al. (eds.) The orbit method in representation theory. (Prog. Math., vol. 80, pp. 147–175. Boston Buset Stuttgart: Birkhäuser 1990

    Google Scholar 

  • [OO] Olafsson, G., Ørsted, B.: The holomorphic discrete series of an affine symmetric space. I. J. Funct. Anal.81, 126–159 (1988)

    Google Scholar 

  • [Os] Oshima, T.: Asymptotic behavior of spherical functions on semisimple symmetric spaces. Adv. Stud. Pure Math.14, 561–601 (1988)

    Google Scholar 

  • [R] Repka, J.: Tensor products of holomorphic discrete series representations. Can. J. Math.31, 836–844 (1979)

    Google Scholar 

  • [S1] Schlichtkrull, H.: A series of unitary irreducible representations induced from a symmetric subgroup of a semisimple Lie group. Invent. Math.68, 497–516 (1982)

    Google Scholar 

  • [S2] Schlichtkrull, H.: Eigenspaces of the Laplacian on hyperbolic spaces: composition series and integral transforms. J. Funct. Anal.70, 194–219 (1987)

    Google Scholar 

  • [V1] Vogan, D.: Representations of real reductive Lie groups, Boston Basel Stuttgart: Birkhäuser 1981

    Google Scholar 

  • [V2] Vogan, D.: Unitary representations of reductive Lie groups. Princeton, NJ: Princeton University Press 1987

    Google Scholar 

  • [V3] Vogan, D.: Irreducibility of discrete series representations for semisimple symmetric spaces. Adv. Stud. Pure Math.14, 191–221 (1988)

    Google Scholar 

  • [VZ] Vogan, D., Zuckerman, G.J.: Unitary representations with non-zero cohomology. Compos. Math.53, 51–90 (1984)

    Google Scholar 

  • [Wa1] Wallach, N.: Real reductive groups. I. (Pure Appl. Math., vol. 132), Boston: Academic Press 1988

    Google Scholar 

  • [War] Warner, G.: Harmonic analysis on semisimple Lie groups. I. Berlin Heidelberg, New York: Springer 1972

    Google Scholar 

  • [Wi] Williams, F.: Tensor products of principal series representations. (Lect. Notes Math., vol. 358) Berlin Heidelberg New York: Springer 1973

    Google Scholar 

  • [Y] Yamashita, H.: Criteria for the finiteness of restriction of U(g) to subalgebras and applications to Harish-Chandra modules. Proc. Japan Acad.68, 316–321 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Oblatum 3-IV-1993

The author is supported by the NSF grant DMS-9100383.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, T. Discrete decomposability of the restriction ofA q(λ) with respect to reductive subgroups and its applications. Invent Math 117, 181–205 (1994). https://doi.org/10.1007/BF01232239

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01232239

Keywords

Navigation