Skip to main content
Log in

Rigidity of circle domains whose boundary hasσ-finite linear measure

  • Published:
Inventiones mathematicae Aims and scope

Summary

Let Ω be a circle domain in the Riemann sphere

whose boundary has σ-finite linear measure. We show that Ω is rigid in the sense that any conformal homeomorphism of Ω onto any other circle domain is equal to the restriction of a Möbius transformation. Previously, Kaufman and Bishop have independently found examples of non-rigid circle, domains whose boundary is a Cantor set of (Hausdorff) dimension one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [Ah] Ahlfors, L.: Lectures on quasiconformal mappings. Princeton, NJ: Van Nostrand 1966

    Google Scholar 

  • [AhB] Ahlfors, L., Bers, L.: Riemann's mapping theorem for variable metrics. Ann. Math.72, 385–404 (1960)

    Google Scholar 

  • [Be] Bers, L.: Uniformization by Beltrami equations. Commun. Pure Appl. Math.14, 215–228 (1961)

    Google Scholar 

  • [Bes] Besicovitch, A.: On sufficient conditions for a function to be analytic, and on behavior of analytic functions in the neighborhood of non-isolated singular points. Proc. Lond. Math. Soc.32, 1–9 (1931)

    Google Scholar 

  • [Bi] Bishop, C.: Some homeomorphisms of the sphere conformal off a curve. (Preprint)

  • [CdV1] Colin de Verdiére, Y.: Empilements de cercles: Convergence d'une mèthode de point fixe. Forum Math.1, 395–402 (1989)

    Google Scholar 

  • [CdV2] Colin de Verdiére, Y.: Un principe variationnel pour les empilements de cercles. Invent. Math.104, 655–669 (1991)

    Google Scholar 

  • [De] Denneberg, R.: Konforme Abbildung einer Klasse unendlich vielfach zusammenhangender schlichter Bereiche auf Kreisbereiche. Dissertation. Leipziger Ber.84, 331–352 (1932)

    Google Scholar 

  • [Gr] Grötzsch, H.: Eine Bemerkung zum Koebeschen Kreisnormierungsprinzip ‘). Leipziger Ber.87, 337 (1935)

    Google Scholar 

  • [Ge] Gehring, F.W.: The definitions and exceptionals sets for quasiconformal mappings. Ann. Acad. Sci. Fenn. Ser. AI281, 1–28 (1960)

    Google Scholar 

  • [GV] Gehring, F.W., Väisälä, J.: On the geometric definition for quasiconformal mappings. Comment. Math. Helv.36, 19–32 (1962)

    Google Scholar 

  • [Haa] Haas, A.: Linearization and mappings onto pseudocircle domains. Trans. Am. Math. Soc.282, 415–429 (1984)

    Google Scholar 

  • [He] He, Z.-X.: An estimate for hexagonal circle packings. J. Differ. Geom.33, 395–412 (1991)

    Google Scholar 

  • [HS1] He, Z.-X., Schramm, O.: Fixed points, Koebe uniformization conjecture, and circle packings. Ann. Math.137, 369–406 (1993)

    Google Scholar 

  • [HS2] He, Z.-X., Schramm, O.: Koebe uniformization for “almost circle packings”. Am. J. Math. (to appear)

  • [HK] Herron, D.A., Koskela, P.: Quasiconformal distance domains and conformal mappings onto circle domains. Complex Variables15, 167–179 (1990)

    Google Scholar 

  • [Jo] Jones, P.: On removable sets for Sobolev spaces in the plane. SUNY Stony Brook, Institute for Mathematical Sciences. (Preprint # 1991/22)

  • [Ka] Kaufman, R.: Fourier-Stieltjes coefficients and continuation of function. Ann. Acad. Sci. Fenn., Ser. AI9, 27–31 (1984)

    Google Scholar 

  • [Ko1] Koebe, P.: Uber die Uniformisierung beliebiger analytischer Kurven. III. Nachr. Ges. Wiss. Gött. 337–358 (1908)

  • [Ko2] Koebe, P.: Abhandlungen zur Theorie der Konformen Abbildung. VI. Abbildung mehrfach zusammenhängender Bereiche auf Kreisbereiche, etc. Math. Z.7, 235–301 (1920)

    Google Scholar 

  • [Ko3] Koebe, P.: Über die konforme Abbildung endlich- und unendlich-vielfach zusammenhängender symmetrischer Bereiche auf Kreisbereiche. Acta Math.43, 263–287 (1922)

    Google Scholar 

  • [Ko4] Koebe, P.: Kontaktprobleme der konformen Abbildung. Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math.-Phys. Kl.88, 141–164 (1936)

    Google Scholar 

  • [LV] Lehto, O., Virtanen: Quasiconformal mappings in the plane. Berlin Heidelberg New York Springer 1973

    Google Scholar 

  • [MR] Marden, A., Rodin, B.: On Thurston's formulation and proof of Andreev's theorem. Ruscheweyh, Saff, Salinas, Varga, (eds.). In: Computational Methods and Function Theory. (Lect. Notes Math., vol. 1435, Berlin Heidelberg New York: Springer 1989 pp. 103–115)

    Google Scholar 

  • [Me1] Meschowski, H.: Über die konforme Abbildung gewisser Bereiche von unendlich hohen Zusammenhang auf Vollkreisbereiche. I. Math. Ann123, 392–405 (1951)

    Google Scholar 

  • [Me2] Meschowski, H.: Über die konforme Abbildung gewisser Bereiche von unendlich hohen Zusammenhang auf Vollkreisbereiche. II. Math. Ann.124, 178–181 (1952)

    Google Scholar 

  • [RS] Rodin, B., Sullivan, D.: The convergence of circle packings to the Riemann mapping. J. Differ. Geom.26, 349–360 (1987)

    Google Scholar 

  • [Sa] Sario, L.: Über Riemannsche Flächen mit hebbarem Rand. Ann. Acad. Sci. Fenn., Ser. AI50, 1–79 (1948)

    Google Scholar 

  • [SN] Sario, L., Nakai, L.: Classification Theory of Riemann Surfaces. Berlin Heidelberg New York: Springer 1970

    Google Scholar 

  • [Sch1] Schramm, O.: Rigidity of infinite (circle) packings. J. Am. Math. Soc.4, 127–149 (1991)

    Google Scholar 

  • [Sch2] Schramm, O.: Transboundary extremal length (in preparation)

  • [Sch3] Schramm, O.: Square tilings with prescribed combinatorics. Isr. J. Math. (to appear)

  • [Si1] Sibner, R.J.: Remarks on the Koebe Kreisnormierungsproblem. Comment. Math. Helv.43, 289–295 (1968)

    Google Scholar 

  • [Si2] Sibner, R.: Uniformizations of symmetric Riemann surfaces by Schottky groups. Trans. Am. Math. Soc. Sci. AI116, 79–85 (1965)

    Google Scholar 

  • [Str1] Strebel, K.L.: Über das Kreisnormierungsproblem der konformen Abbildung. Ann. Acad. Sci. Fenn.,101, 1–22 (1951)

    Google Scholar 

  • [Str2] Strebel, K.L.: Über die konforme Abbildung von Gebieten unendlich hohen Zusammenhangs. Comment. Math. Helv.27, 101–127 (1953)

    Google Scholar 

  • [Su] Sullivan, D.: On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions. In; Kra, I., Maskit, B. (eds.) Riemann Surfaces and Related Topics. Proceedings of the 1978 Stony Brook Conference. (Ann. Math. Stud. vol. 97, pp. 465–496) Princeton, NJ: Princeton University Press

  • [Th] Thurston, W.P.: The Geometry and Topology of 3-manifolds, Chap. 13. (Math. Notes, Princeton) Princeton, NJ: Princeton University Press 1980

    Google Scholar 

  • [Tsu] Tsuji, M.: Potential Theory in Modern Function Theory. Tokyo: Maruzen 1959

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Oblatum 19-VI-1992 & 2-IV-1993

Supported by NSF and Sloan Foundation

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, ZX., Schramm, O. Rigidity of circle domains whose boundary hasσ-finite linear measure. Invent Math 115, 297–310 (1994). https://doi.org/10.1007/BF01231761

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01231761

Keywords

Navigation