Skip to main content
Log in

The affine planeAG(2,q),q odd, has a unique one point extension

  • Published:
Inventiones mathematicae Aims and scope

Summary

LetJ be a finite inversive plane of odd orderq. If for at least one pointp ofJ the internal affine planeJ p is Desarguesian, thenJ is Miquelian. Other formulation: the finite Desarguesian affine plane of odd orderq has a unique one point extension; this extension is the Miquelian inversive plane of orderq. It follows that there is a unique inversive plane of orderq, withq∈{3, 5, 7}.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. L. Bader: Some new examples of flocks ofQ + (3,q). Geom. Dedicata27 (1988) 213–218

    Google Scholar 

  2. L. Bader, G. Lunardon. On the flocks ofQ +(3,q). Geom. Dedicata29 (1989) 177–183

    Google Scholar 

  3. R.D. Baker, G.L. Ebert: A nonlinear flock in the Minkowski plane of order 11. Congr. Numer.58 (1987) 75–81

    Google Scholar 

  4. A. Bonisoli, G. Korchmáros: Flocks of hyperbolic quadrics and linear groups containing homologies. Geom. Dedicata42 (1992) 295–309

    Google Scholar 

  5. Y. Chen. The Steiner systemS(3, 6, 26). J. Geom.2 (1972) 7–28

    Google Scholar 

  6. P. Dembowski. Finite geometries. Berlin Heidelberg New York: Springer 1968

    Google Scholar 

  7. R.H.F. Denniston. Uniqueness of the inversive plane of order 5. Manus. Math.8 (1973) 11–19

    Google Scholar 

  8. R.H.F. Denniston: Uniqueness of the inversive plane of order 7. Manus. Math.8 (1973) 21–23

    Google Scholar 

  9. N. Durante: Piani inversivi e flock di quadriche, Tesi di Laurea in Matematica 1991–92, Università degli Studi di Napoli e Universiteit Gent

  10. J.C. Fisher, J.A. Thas. Flocks inPG(3,q). Math. Z.169 (1979) 1–11

    Google Scholar 

  11. H.-R. Halder, W. Heise, Einführung in die Kombinatorik. München: Carl Hanser 1976

    Google Scholar 

  12. J.W.P. Hirschfeld: Projective geometries over finite fields. Oxford: Oxford University Press 1975

    Google Scholar 

  13. J.W.P. Hirschfeld: Finite projective spaces of three dimensions, Oxford: Oxford University Press 1985

    Google Scholar 

  14. N.L. Johnson: Flocks of hyperbolic quadrics and translation planes admitting affine homologies. J. Geom.34 (1989) 50–73

    Google Scholar 

  15. J.A. Thas: Flocks of nonsingular ruled quadrics inPG(3,q). Atti Accad. Naz. Lincei59, (1975) 83–85

    Google Scholar 

  16. J.A. Thas: Some results on quadrics and a new class of partial geometries. Simon Stevin55 (1981) 129–139

    Google Scholar 

  17. J.A. Thas: Flocks, maximal exterior sets and inversive planes. In: Finite geometries and combinatorial designs. American Mathematical Society 1990, Providence, RI, pp. 187–218

  18. J.A. Thas: Solution of a classical problem on finite inversive planes. In: Finite buildings, related geometries and applications. Oxford: Oxford University Press 1990, pp. 145–159

    Google Scholar 

  19. E. Witt: Uber Steinersche Systeme. Abh. Math. Sem. Univ. Hamburg12 (1938) 265–275

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Oblatum 23-X-1992 & 24-I-1994

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thas, J.A. The affine planeAG(2,q),q odd, has a unique one point extension. Invent Math 118, 133–139 (1994). https://doi.org/10.1007/BF01231529

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01231529

Keywords

Navigation