Skip to main content

Isospectral plane domains and surfaces via Riemannian orbifolds

This is a preview of subscription content, access via your institution.

References

  • [Be1] Bérard, P.: Variétés Riemanniennes isospectrales non isométriques. Astérisque177–178, 127–154 (1989)

    Google Scholar 

  • [Be2] Bérard, P.: Transplantation et isospectralité I. Math. Ann.292, 547–559 (1992)

    Google Scholar 

  • [Br1] Brooks, R.: Constructing isospectral manifolds. Am. Math. Mon.95, 823–839 (1988)

    Google Scholar 

  • [Br2] Brooks, R.: On manifolds of negative curvature with isospectral potentials. Topology26, 63–66 (1987)

    Google Scholar 

  • [BPY] Brooks, R., Perry, P., Yang, P.: Isospectral sets of conformally equivalent metrics. Duke Math. J.58, 131–150 (1989)

    Google Scholar 

  • [BT] Brooks, R., Tse, R.: Isospectral surfaces of small genus. Nagoya Math. J.107, 13–24 (1987)

    Google Scholar 

  • [Bu1] Buser, P.: Cayley graphs and planar isospectral domains. In: Sunada, T. (ed.) Proc. Taniguchi Symp. Geometry and analysis on manifolds, 1987. (Lect. Notes Math., vol. 1339, pp. 64–77.) Berlin Heidelberg New York: Springer 1988

    Google Scholar 

  • [Bu2] Buser, P.: Isospectral Riemann surfaces. Ann. Inst. Fourier36(2), 167–192 (1986)

    Google Scholar 

  • [BS] Buser, P., Semmler, K.D.: Private communication

  • [CF] Cassels, J.W.S., Fröhlich, A.: Algebraic Number Theory. London: Academic Press 1967

    Google Scholar 

  • [C] Chavel, I.: Eigenvalues in Riemannian Geometry. Academic Press, London 1984

    Google Scholar 

  • [D] DeTurck, D.: Audible and inaudible geometric properties. Proc. of Conference on Geometry and Topology. In: (Rend. Semin. Fac. Sci. Univ. Cagliari, vol. 58, pp. 1–26 (1988 supplement)) Universita di Cagliari 1988

  • [DG] DeTurck, D., Gordon, C.: Isospectral deformations II: trace formulas, metrics, and potentials. Commun. Pure Appl. Math.42, 1067–1095 (1989)

    Google Scholar 

  • [Ga] Gassmann, F.: Bemerkung zu der vorstehenden Arbeit von Hurwitz. Math. Z.25, 124–143 (1926)

    Google Scholar 

  • [Ge] Gerst, I.: On the theory ofn th power residues and a conjecture of Kronecker. Acta Arithmetica17, 121–139 (1970)

    Google Scholar 

  • [Go] Gordon, C.: When you can't hear the shape of a manifold. Math. Intell.11, 39–47 (1989)

    Google Scholar 

  • [GWW] Gordon, C., Webb, D., Wolpert, S.: One can't hear the shape of a drum. Bull. Am. Math. Soc.27, 134–138 (1992).

    Google Scholar 

  • [Gu] Guralnik, R.: Subgroups inducing the same permutation representation. J. Algebra81, 312–319 (1983)

    Google Scholar 

  • [K] Kac, M.: Can one hear the shape of a drum? Am. Math. Mon.73, 1–23 (1966)

    Google Scholar 

  • [P] Perlis, R.: On the equation 22-1. J. Number Theory9, 342–360 (1977)

    Google Scholar 

  • [Sa] Satake, I.: On a generalization of the notion of manifold. Proc. Natl. Acad. Sci., USA42, 359–363 (1956)

    Google Scholar 

  • [Sc] Scott, G.P.: The geometries of 3-manifolds. Bull. Lond. Math. Soc.15, 401–487 (1983)

    Google Scholar 

  • [Su] Sunada, T.: Riemannian coverings and isospectral manifolds. Ann. Math.121, 248–277 (1985)

    Google Scholar 

  • [T] Thurston, W.P.: The geometry and topology of 3-manifolds. (Mimeographed lecture notes) Princeton University 1976–79

Download references

Author information

Authors and Affiliations

Authors

Additional information

Oblatum 7-IV-1992

All three authors were partially supported by grants from the National Science Foundation

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gordon, C., Webb, D. & Wolpert, S. Isospectral plane domains and surfaces via Riemannian orbifolds. Invent Math 110, 1–22 (1992). https://doi.org/10.1007/BF01231320

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01231320

Keywords

  • Plane Domain
  • Riemannian Orbifolds