Advertisement

Celestial mechanics

, Volume 1, Issue 1, pp 12–30 | Cite as

Canonical transformations depending on a small parameter

  • André Deprit
Article

Abstract

The concept of a Lie series is enlarged to encompass the cases where the generating function itself depends explicity on the small parameter. Lie transforms define naturally a class of canonical mappings in the form of power series in the small parameter. The formalism generates nonconservative as well as conservative transformations. Perturbation theories based on it offer three substantial advantages: they yield the transformation of state variables in an explicit form; in a function of the original variables, substitution of the new variables consists simply of an iterative procedure involving only explicit chains of Poisson brackets; the inverse transformation can be built the same way.

Keywords

Generate Function Perturbation Theory Power Series Explicit Form Small Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barton, D.: 1967,Astron. J. 72, 1281.Google Scholar
  2. Breakwell, J. and Pringle, R.: 1966,Progress in Aeronautics, vol. 17, Academic Press, New York, pp. 55–73.Google Scholar
  3. Deprit, A.: 1966,Proceedings of I.A.U. Sympsium 25, Academic Press, London, pp. 170–175.Google Scholar
  4. Deprit, A. and Henrard, J.: 1967,Icarus 6, 381.Google Scholar
  5. Dziobek, O.: 1888,Die Mathematischen Theorien der Planetenbewegungen (reprint of the English translation by Dover Publication Inc. New York, 1962).Google Scholar
  6. Gröbner, W.: 1960,Die Lie-Reihen und ihre Anwendungen, Springer-Verlag, Berlin.Google Scholar
  7. Hori, G.: 1966,Publ. Astron. Soc. Japan,18, 287.Google Scholar
  8. Hori, G.: 1967,Publ. Astron. Soc. Japan 19, 229.Google Scholar
  9. Iszak, I.: 1963,Astron. J. 68, 559.Google Scholar
  10. Lacina, J.: 1969,Ann. Phys. 51, 381.Google Scholar
  11. Leimanis, E.: 1965,The General Problem of the Motion of Coupled Rigid Bodies about a Fixed Point, Springer-Verlag, New York, pp. 121–128.Google Scholar
  12. Lyddane, R. H. and Cohen, C. J.: 1962,Astron. J. 67, 176.Google Scholar
  13. Schechter, H.: 1968,Second Compilation of Papers on Trajectory Analysis and Guidance Theory, NASA ERC Boston, PM-67-21, pp. 320–329.Google Scholar
  14. Stumpff, K.: 1968, NASA TN D-4460.Google Scholar
  15. Wintner, A.: 1941,The Analytical Foundations of Celestial Mechanics, Princeton University Press, Princeton, N.J., pp. 22–28.Google Scholar

Copyright information

© D. Reidel Publishing Company 1969

Authors and Affiliations

  • André Deprit
    • 1
  1. 1.Boeing Scientific Research LaboratoriesSeattleUSA

Personalised recommendations