Skip to main content
Log in

On the periodic solutions and resonance of spinning satellites in near-circular orbits

  • Published:
Celestial mechanics Aims and scope Submit manuscript

Abstract

Attitude motion of spinning axisymmetric satellites in presence of gravity-gradient and solar radiation pressure torques is studied analytically. The approximate closed-form solution developed for the nonlinear, nonautonomous, coupled fourth-order system proves to be an excellent tool in locating periodic solutions of the system in both circular and noncircular orbits. The variational stability of the periodic motion is examined using the Floquet theory. The resonance analysis suggests the existence of critical combinations of system parameters leading to large amplitude oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A 0 :

2Ce/n 21 , Equation (3a)

A 1 :

C(1+3e)(1−n 22 l 1)/(1−k 21 )(1−k 22 ), Equation (3a)

A 2 :

2Ce(n 22 +2l 1−4)/(4−k 21 )(4−k 22 ), Equation (3a)

B 1 :

C(1+3e)(1−n 21 l 2)/(1−k 21 )(1−k 22 ), Equation (3b)

B 2 :

2Ce(n 21 +2l 2−4)/(4−k 21 )(4−k 22 ), Equation (3b)

C :

solar parameter, 2R 3 p p 0 rlε(1−τ+ϱ/3)/μI y

C p :

center of pressure of the satellite

G :

solar aspect ratio, (πr/2l)(1−τ−ϱ)/(1−τ+ϱ/3)

I :

inertia parameter,I x /I y

I x ,I y ,I z :

principal moments of inertia of the satellite

O :

center of force

P :

pericenter

R :

distance between the satellite center of mass and the center of force

S :

satellite center of mass

e :

orbit eccentricity

i :

inclination of the orbital plane from the ecliptic

i, j, k :

unit vectors alongx, y, z axes, respectively

k i :

characteristic frequencies of linear systemi=1, 2

l, r :

length and radius of the cylindrical satellite, respectively

l 1 :

I(σ+1)(1+2e)−2, Equation (2a)

l 2 :

I(σ+1)(1+2e)−2, Equation (2b)

n 21 :

3I−4+I(σ+1)(1+2e), Equation (2a)

n 22 :

I(σ+1)(1+2e)−1, Equation (2b)

p 0 :

solar radiation pressure

u :

unit vector in the direction of the Sun,u i i+u j j+u k k

u i :

cos ϕ(sin γ cos β cos η+sin β sin η)+sin ϕ{cosi(sin γ cos β sin η−sin β cos η)−sini cos β cos γ}

u j :

cos ϕ cos γ cos η+sin ϕ(cosi cos γ sin η+sini sin γ)

u k :

cos ϕ(sin γ sin β cos η−cos β sin η)+sin ϕ{cosi(sin γ sin β sin η+cos β cos η)−sini sin β cos γ}

x, y, z :

principal body coordinates

x′, y′, z′ :

inertial coordinates

x 0,y 0,z 0 :

rotating coordinate system withx 0 normal to the orbital plane andy 0 along the local vertical

\(\left. \begin{gathered} x_1 ,y_1 ,z_1 ; \hfill \\ x_2 ,y_2 ,z_2 \hfill \\ \end{gathered} \right\}\) :

intermediate body coordinates resulting from rotations γ and β aboutz 0 andy 1 axes, respectively

Ω:

angle between the vernal equinox and the line of nodesNN′

α, β, γ:

librational angles

α i :

(k 2 i n 21 )/l 1 k i ,i=1, 2, Equation (3b)

ε:

distance between the center of pressure and the center of mass of the satellite

η:

ω+θ

θ:

orbital angle from perigee (true anomaly)

λ i :

characteristic multipliers of the variational Equations (18),i=1, 2, 3, 4

ϱ, τ:

reflectivity and transmissibility of the satellite surface, respectively

σ:

spin parameter,\([\dot \alpha /\dot \theta ]_{\theta = \beta = \gamma = 0}\)

ϕ:

solar aspect angle

ψ i :

k i θ+β i (θ),i=1,2

ω:

angle between the line of apsides and the line of nodes

ω i :

frequencies of nonlinear oscillations,i=1, 2

References

  • Baker, R. M.: 1960,American Rocket Society Journal 30, 124–6.

    Google Scholar 

  • Butenin, N. V.: 1965,Elements of the Theory of Nonlinear Oscillations, Blaisdell, pp. 201–17.

  • Minorsky, N.: 1962,Nonlinear Oscillations, van Nostrand, pp. 127–33.

  • Modi, V. J. and Brereton, R. C.: 1969a,AIAAJ.7, 1217–25.

    Google Scholar 

  • Modi, V. J. and Brereton, R. C.: 1969b,AIAAJ.7, 1465–8.

    Google Scholar 

  • Modi, V. J. and Neilson, J. E.: 1972,Celes. Mech. 5, 126–43.

    Google Scholar 

  • Modi, V. J. and Pande, K. C.: 1973,Journal of Spacecraft and Rockets 10, 615–17.

    Google Scholar 

  • Pande, K. C.: 1973, Ph.D. Thesis, University of British Columbia, Canada, pp. 16–23, 184.

  • Zlatousov, V. A., Okhatsimsky, D. E., Sarychev, V. A., and Torzhevsky, A. P.: 1964, in H. Görtler (ed.),Proceedings of the XIth International Congress of Applied Mechanics, Springer-Verlag, Berlin, pp. 436–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Primes indicate differentiation with respect to the orbital angle θ. The subscript 0 denotes initial condition.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Modi, V.J., Pande, K.C. On the periodic solutions and resonance of spinning satellites in near-circular orbits. Celestial Mechanics 11, 195–212 (1975). https://doi.org/10.1007/BF01230545

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01230545

Keywords

Navigation