Skip to main content
Log in

An eigenvalue problem for the numerical range of a bounded linear operator

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

LetX be a complex Lebesgue space with a unique duality mapJ fromX toX *, the conjugate space ofX. LetA be a bounded linear operator onX. In this paper we obtain a non-linear eigenvalue problem for Λ(A)=sup{Reα: α ∈W(A} whereW(A)={J(x)A(x)) : ∥x∥=1}, under the assumption that Λ(A) and the convex hull ofW(A) for some linear operatorsA onl p , 2<p<∞.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Aumann, Reelle Funktionen, Springer Verlag, Berlin, 1954.

    Google Scholar 

  2. S. Banach, Théorie des Opérationes Linéaires, Monografje Matematyczne, vol 1, Warsaw, 1932.

  3. F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, I and II, Cambridge University Press, London, 1971 and 1973.

    Google Scholar 

  4. I. Cioranescu Geometry of Banach spaces, Duality Mappings and Non-linear Problems, Kluwer Academic Publishers, Dordrecht, Boston, London 1990.

    Google Scholar 

  5. N. Bourbaki, Éléments de Mathématique, Livre VI, Intégration, Hermann, Act. Sci. et Ind. 1175, Paris, 1965.

  6. J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396–414.

    Google Scholar 

  7. L. W. Cohen, Transformations on spaces of infinitely many dimensions, Ann. of Math. (2) 37 (1936), 326–335.

    Google Scholar 

  8. W. D. Cook and R. J. Webster, Caratheodory's theorem, Canad. Math. Bull. 15 (1972), 293.

    Google Scholar 

  9. D. F. Cudia, The geometry of Banach spaces. Smoothness, Trans. Amer. Math. Soc. 110 (1964), 284–314.

    Google Scholar 

  10. N. Dunford and J. T. Schwartz, Linear operators, Part I, General Theory, Interscience publishers, New York, 1958.

    Google Scholar 

  11. U. Fixman, F. Okoh, and G. K. R. Rao, The existence of a maximizing vector for the numerical range of a compact operator, Proc. Amer. Math. Soc. 124 (1996), 1133–1138.

    Google Scholar 

  12. J. R. Giles, Classes of semi-inner-product spaces, Trans. Amer. Math. Soc. 129 (1967), 436–446.

    Google Scholar 

  13. P. R. Halmos, Measure Theory, D. Van Nostrand, New York, 1950.

    Google Scholar 

  14. G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961), 29–43.

    Google Scholar 

  15. G. Lumer and R. S. Phillips, Dissipative operators in a Banach space, Pac. J. Math. 11 (1961), 679–698.

    Google Scholar 

  16. M. Marcus and C. Pesce, Computer generated numerical ranges and some resulting theorems, Linear and multilinear Algebra 20, (1987), 121–157.

    Google Scholar 

  17. S. Mazur, Über schwache Konvergenz in den Räumen (L p), Studia Math. 4 (1933), 128–133.

    Google Scholar 

  18. R. Payá, A counterexample on numerical radius attaining operators, Israel J. Math 79 (1992) 83–101.

    Google Scholar 

  19. G. K. R. Rao, Numerical ranges of linear operators inL p -spaces, Doctoralthesis (1974), Queen's University, Kingston, Canada.

    Google Scholar 

  20. V. L. Šmulian, Sur la dérivabilité de la norme dans l'espace de Banach, Dokl. Akad. Nauk. SSSR 27(1940), 643–648.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fixman, U., Okoh, F. & Rao, G.K.R. An eigenvalue problem for the numerical range of a bounded linear operator. Integr equ oper theory 31, 421–435 (1998). https://doi.org/10.1007/BF01228100

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01228100

1991 Mathematical subject classification

Navigation