Skip to main content
Log in

Normality condition in the ideal resonance problem

  • Published:
Celestial mechanics Aims and scope Submit manuscript

Abstract

The Ideal Resonance Problem, defined by the Hamiltonian

$$F = B(y) + 2\mu ^2 A(y)\sin ^2 x,\mu \ll 1,$$

has been solved in Garfinkelet al. (1971). As a perturbed simple pendulum, this solution furnishes a convenient and accurate reference orbit for the study of resonance. In order to preserve the penduloid character of the motion, the solution is subject to thenormality condition, which boundsAB" andB' away from zero indeep and inshallow resonance, respectively. For a first-order solution, the paper derives the normality condition in the form

$$pi \leqslant max(|\alpha /\alpha _1 |,|\alpha /\alpha _1 |^{2i} ),i = 1,2.$$

Herep i are known functions of the constant ‘mean element’y', α is the resonance parameter defined by

$$\alpha \equiv - {\rm B}'/|4AB\prime \prime |^{1/2} \mu ,$$

and

$$\alpha _1 \equiv \mu ^{ - 1/2}$$

defines the conventionaldemarcation point separating the deep and the shallow resonance regions. The results are applied to the problem of the critical inclination of a satellite of an oblate planet. There the normality condition takes the form

$$\Lambda _1 (\lambda ) \leqslant e \leqslant \Lambda _2 (\lambda )if|i - tan^{ - 1} 2| \leqslant \lambda e/2(1 + e)$$

withΛ 1, andΛ 2 known functions of λ, defined by

$$\begin{gathered} \lambda \equiv |\tfrac{1}{5}(J_2 + J_4 /J_2 )|^{1/4} /q, \hfill \\ q \equiv a(1 - e). \hfill \\ \end{gathered}$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aoki, S.: 1963,Astron. J. 68, 355.

    Google Scholar 

  • Breakwell, J.: 1961, Private communication.

  • Brouwer, D. and Clemence, G. M.: 1961,Planets and Satellites, (ed. by G. H. Kuiper), Univ. of Chicago Press, pp. 72–73.

  • Brown, E. W. and Shook, C. A.: 1933,Planetary Theory, Dover Publ. Co., New York, Ch. VIII.

    Google Scholar 

  • Garfinkel, B.: 1962,Proceedings of the First International Symposium on the Use of Artificial Satellites in Geodesy, Washington, D.C.,-abstract only.

  • Garfinkel, B.: 1966,Astron. J. 71, 657 (Paper I).

    Google Scholar 

  • Garfinkel, B.: 1970,Periodic Orbits, Stability, and Resonance, (ed. by G. E. O. Giacaglia), Reidel Publ. Co., p. 474.

  • Garfinkel, B.: 1972a,Celest. Mech. 5, 189 (Paper III).

    Google Scholar 

  • Garfinkel, B.: 1972b,5, 451 (Paper IV).

    Google Scholar 

  • Garfinkel, B., Jupp, A., and Williams, C.: 1971,Astron. J. 76, 157 (Paper II).

    Google Scholar 

  • Hori, G.: 1960,Astron. J. 65, 291.

    Google Scholar 

  • Izsak, I.: 1962,S.A.O., Special Report 90.

  • Jupp, A. H.: 1969,Astron. J. 74, 35.

    Google Scholar 

  • Jupp, A. H.: 1970,Monthly Notices Roy. Astron. Soc. 148, 197.

    Google Scholar 

  • Tisserand, F. F.: 1889–1896,Méchanique Céleste, Gauthier-Villars, Paris, v.IV, p. 421ff.

    Google Scholar 

  • von Zeipel, H.: 1916,Arkiv. Mat. Astron. Fys. II.

  • Whittaker, E. T. and Watson, G. N.: 1965,A Course in Modern Analysis, Cambridge University Press, Ch. XXII.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garfinkel, B. Normality condition in the ideal resonance problem. Celestial Mechanics 6, 151–166 (1972). https://doi.org/10.1007/BF01227778

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01227778

Keywords

Navigation