Skip to main content
Log in

A regularization of the three-body problem

  • Published:
Celestial mechanics Aims and scope Submit manuscript

Abstract

Letr 1,r 2,r 3 be arbitrary coordinates of the non-zero interacting mass-pointsm 1,m 2,m 3 and define the distancesR 1=|r 1r 3|,R 2=|r 2r 3|,R=|r 1r 2|. An eight-dimensional regularization of the general three-body problem is given which is based on Kustaanheimo-Stiefel regularization of a single binary and possesses the properties:

  1. (i)

    The equations of motion are regular for the two-body collisionsR 1→0 orR 2→0.

  2. (ii)

    Provided thatRR 1 orRR 2, the equations of motion are numerically well behaved for close triple encounters.

Although the requirementR≳ min (R 1,R 2) may involve occasional transformations to physical variables in order to re-label the particles, all integrations are performed in regularized variables. Numerical comparisons with the standard Kustaanheimo-Stiefel regularization show that the new method gives improved accuracy per integration step at no extra computing time for a variety of examples. In addition, time reversal tests indicate that critical triple encounters may now be studied with confidence.

The Hamiltonian formulation has been generalized to include the case of perturbed three-body motions and it is anticipated that this procedure will lead to further improvements ofN-body calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarseth, S. J.: 1971,Astrophys. Space Sci. 14, 118.

    Google Scholar 

  • Baumgarte, J. and Stiefel, E.: 1974, in D. G. Bettis (ed.),Lecture Notes in Mathematics, Springer Verlag, Heidelberg, Vol. 362, p. 207.

    Google Scholar 

  • Bettis, D. G. and Szebehely, V.: 1971,Astrophys. Space Sci. 14, 133.

    Google Scholar 

  • Birkhoff, G. D.: 1915,Rend. Circ. Mat. Palermo 39, 1.

    Google Scholar 

  • Burrau, C.: 1906,Vierteljahrschrift Astron. Ges. 41, 261.

    Google Scholar 

  • Euler, L.: 1765,Nov. Comm. Petrop. 11, 144.

    Google Scholar 

  • Fehlberg, E.: 1968, ‘Classical Fifth-, Sixth-, Seventh-, and Eighth-Order Runge-Kutta Formulas with Stepsize Control’, NASA Technical Report 287.

  • Heggie, D. C.: 1974, this issue, p. 217.

  • Hopf, H.: 1931,Math. Ann. 104.

  • Hurwitz, A.: 1933,Math. Werke, Vol. 2, Birkhäuser, Basel.

    Google Scholar 

  • Kustaanheimo, P. and Stiefel, E.: 1965,J. Reine Angew. Math. 218, 204.

    Google Scholar 

  • Lemaître, G.: 1955,Vistas in Astronomy 1, 207.

    Google Scholar 

  • Levi-Civita, T.: 1903,Ann. Math. 9, 1.

    Google Scholar 

  • Peters, C. F.: 1968,Bull. Astron. 3, 167.

    Google Scholar 

  • Poincaré, H.: 1907,Acta Math. 31, 1.

    Google Scholar 

  • Stiefel, E. and Waldvogel, J.: 1965,Compt. Rend. 260, 805.

    Google Scholar 

  • Sundman, K. F.: 1912,Acta. Math. 36, 105.

    Google Scholar 

  • Szebehely, V.: 1967,Theory of Orbits, Academic Press, New York.

    Google Scholar 

  • Szebehely, V. and Peters, C. F.: 1967,Astron. J. 72, 876.

    Google Scholar 

  • Thiele, T. N.: 1896,Astron. Nachr. 138, 1.

    Google Scholar 

  • Waldvogel, J.: 1972,Celes. Mech. 6, 221.

    Google Scholar 

  • Whittaker, E. T.: 1904,Analytical Dynamics, Cambridge University Press.

  • Zare, K.: 1974, this issue, p. 207.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aarseth, S.J., Zare, K. A regularization of the three-body problem. Celestial Mechanics 10, 185–205 (1974). https://doi.org/10.1007/BF01227619

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01227619

Keywords

Navigation