Abstract
Letr 1,r 2,r 3 be arbitrary coordinates of the non-zero interacting mass-pointsm 1,m 2,m 3 and define the distancesR 1=|r 1−r 3|,R 2=|r 2−r 3|,R=|r 1−r 2|. An eight-dimensional regularization of the general three-body problem is given which is based on Kustaanheimo-Stiefel regularization of a single binary and possesses the properties:
-
(i)
The equations of motion are regular for the two-body collisionsR 1→0 orR 2→0.
-
(ii)
Provided thatR≳R 1 orR≳R 2, the equations of motion are numerically well behaved for close triple encounters.
Although the requirementR≳ min (R 1,R 2) may involve occasional transformations to physical variables in order to re-label the particles, all integrations are performed in regularized variables. Numerical comparisons with the standard Kustaanheimo-Stiefel regularization show that the new method gives improved accuracy per integration step at no extra computing time for a variety of examples. In addition, time reversal tests indicate that critical triple encounters may now be studied with confidence.
The Hamiltonian formulation has been generalized to include the case of perturbed three-body motions and it is anticipated that this procedure will lead to further improvements ofN-body calculations.
Similar content being viewed by others
References
Aarseth, S. J.: 1971,Astrophys. Space Sci. 14, 118.
Baumgarte, J. and Stiefel, E.: 1974, in D. G. Bettis (ed.),Lecture Notes in Mathematics, Springer Verlag, Heidelberg, Vol. 362, p. 207.
Bettis, D. G. and Szebehely, V.: 1971,Astrophys. Space Sci. 14, 133.
Birkhoff, G. D.: 1915,Rend. Circ. Mat. Palermo 39, 1.
Burrau, C.: 1906,Vierteljahrschrift Astron. Ges. 41, 261.
Euler, L.: 1765,Nov. Comm. Petrop. 11, 144.
Fehlberg, E.: 1968, ‘Classical Fifth-, Sixth-, Seventh-, and Eighth-Order Runge-Kutta Formulas with Stepsize Control’, NASA Technical Report 287.
Heggie, D. C.: 1974, this issue, p. 217.
Hopf, H.: 1931,Math. Ann. 104.
Hurwitz, A.: 1933,Math. Werke, Vol. 2, Birkhäuser, Basel.
Kustaanheimo, P. and Stiefel, E.: 1965,J. Reine Angew. Math. 218, 204.
Lemaître, G.: 1955,Vistas in Astronomy 1, 207.
Levi-Civita, T.: 1903,Ann. Math. 9, 1.
Peters, C. F.: 1968,Bull. Astron. 3, 167.
Poincaré, H.: 1907,Acta Math. 31, 1.
Stiefel, E. and Waldvogel, J.: 1965,Compt. Rend. 260, 805.
Sundman, K. F.: 1912,Acta. Math. 36, 105.
Szebehely, V.: 1967,Theory of Orbits, Academic Press, New York.
Szebehely, V. and Peters, C. F.: 1967,Astron. J. 72, 876.
Thiele, T. N.: 1896,Astron. Nachr. 138, 1.
Waldvogel, J.: 1972,Celes. Mech. 6, 221.
Whittaker, E. T.: 1904,Analytical Dynamics, Cambridge University Press.
Zare, K.: 1974, this issue, p. 207.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Aarseth, S.J., Zare, K. A regularization of the three-body problem. Celestial Mechanics 10, 185–205 (1974). https://doi.org/10.1007/BF01227619
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01227619