Skip to main content
Log in

Alkylphosphocholine-induced production of nitric oxide and tumor necrosis factor α by U 937 cells

  • Original Paper
  • Experimental Oncology
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

The human histiocytic cell line U937, which expresses a number of monocyte markers and properties, was investigated with regard to its ability to be activated for NO and tumor necrosis factor (TNF) release after treatment with alkylphosphocholines (APC) and APC liposomes. Using APC multilamellar vesicles (MLV) a clear dose-dependent increase of NO production could be demonstrated for U 937 cells, whereas the corresponding soluble substances had no effect. The time course of NO release was characterised by a peak between 2 h and 12 h and a strong decrease after 24 h. LPS caused no NO release nor the production of TNF in U 937 cells. The simultaneous incubation of the cells with lipopolysaccharide and APC or APC-MLV, led to a strong increase in TNF production. Closer investigation of the time sequence of this synergistic effect demonstrated that cells, that had first been treated with hexadecylphosphocholine (HPC)-MLV and 4 h later with lipopolysaccharride secreted significantly more TNF into the supernatants than in the experiment where both substances were added simultaneously. From these results it was concluded that APC-MLV are possibly able to act as a primer in the process of lipopolysaccharide mediated TNF induction. Furthermore, a positive influence of phorbol 12-myristate 13-acetate (PMA) on the ability of U 937 cells to produce TNF following a treatment with HPC or HPC-MLV could be observed. PMA-pretreated cells were shown to release much more TNF compared to control cells, which led to the supposition that the immunomodifying activity of APC becomes effective only in more highly differentiated cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APC :

alkylphosphocholines

DPC :

dodecylphosphocholine

HPC :

hexadecylphosphocholine

TPC :

tetradecylphosphocholine

MLV :

multilamellar vesicles

PMA :

phorbol 12-myristate 13-acetate

TNF :

tumour necrosis factor

References

  • Andreesen R, Giese V (1987) Differential effects of ether lipids on the activity and secretion of interleukin-1 and interleukin-2. Lipids 22:836–841

    PubMed  Google Scholar 

  • Andreesen R, Osterholz J, Luckenbach GA, Costabel U, Schulz A, Speth V, Löhr GW (1984) Tumor cytotoxicity of human macrophages after incubation with synthetic analogues of 2-lysophosphocholine. J Natl Cancer Inst 72:53–59

    PubMed  Google Scholar 

  • Berdel WE, Bausert WR, Weltzein HU, Modolell ML, Widman KH, Munder PG (1980) The influence of alkyl-lysophospholipids and lysophospholipid-activated macrophages on the development of metastasis of 3-Lewis lung carcinoma. Eur J Cancer 16:1199–1208

    PubMed  Google Scholar 

  • Curley AS, Roh MS, Feig B, Oyedeji C, Kleinerman ES, Klostergaard J (1993) Mechanisms of kupffer cell cytotoxicity in vitro against the syngeneic murine colon adenocarcinoma line MCA 26. J Leucocyte Biol 53:715–721

    Google Scholar 

  • Ding AH, Nathan CF, Stuehr DJ (1988) Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. J Immunol 141:2407–2412

    PubMed  Google Scholar 

  • Diomede L, Bianchi R, Modest EJ, Piovani B, Filippo B, Salmona M (1992) Modulation of ATPase activity by cholesterol and synthetic ether lipids in leucemic cells. Biochem Pharmacol 43:803–807

    PubMed  Google Scholar 

  • Dummer R, Krasovec M, Roger J, Sindermann H, Burg G (1993) Topical administration of hexadecylphosphocholine in patients with cutaneous lymphomas-results of phase-I/II Study. J Am Acad Dermatol 29:963–970

    PubMed  Google Scholar 

  • Eibl H, Unger C (1990) Hexadecylphosphocholine: a new and selective antitumor drug. Cancer Treat Rev 17:233–242

    PubMed  Google Scholar 

  • Espervik T, Nissen-Meyer J (1986) A highly sensitive cell line, WEHI 164 clone 13, for measuring cytotoxic factor/tumor necrosis factor from human monocytes. J Immunol Methods 95:99–105

    PubMed  Google Scholar 

  • Eue I, Zeisig R, Jungmann S, Fichtner I, Arndt D (1994) Immunmodifying and tumorcytotoxic properites of free and liposomal alkylphosphocholines. Eur J Cell Biol 63:16

    Google Scholar 

  • Geilen CC, Haase R, Buchner K, Wieder T, Hucho F, Reutter W (1991) The phospholipid analogue, hexadecylphosphocholine, inhibits protein kinase C in vitro and antagonises phorbol esterstimulated cell proliferation. Eur J Cancer 27:1650–1653

    PubMed  Google Scholar 

  • Grunicke H, Hofmann J, Oberhuber H, Überall F, Zaknun J, Voegeli R, Hilgard P (1990) Hexadecylphosphocholine inhibits protein kinase C and depresses the inositol phosphate response in NIH 3T3 fibroblasts. J Cancer Res Clin Oncol 116 [Suppl II]:889

    Google Scholar 

  • Grunicke H, Hofmann J (1992) Cytotoxic and Cytostatic effects of antitumor agents induced at the plasma membrane level. Pharmac Ther 55:1–30

    Google Scholar 

  • Hibbs JB, Vavrin Z, Traintor RR (1987)l-Arginine is required for expression of the activated macrophage effector mechanism causing selective metabolic inhibition in target cells. J Immunol 138:550–565

    PubMed  Google Scholar 

  • Hilgard P, Klenner T, Stekar J, Unger C (1993) Alkylphosphocholines: a new class of membrane-active anticancer agents. Cancer Chemother Pharmacol 32:90–95

    PubMed  Google Scholar 

  • Hochhuth C, Berkovic D, Eibl H, Unger C, Doenecke D (1990) Effects of antineoplastic phospholipids on parameters of cell differentiation in U 937 cells. J Cancer Res Clin Oncol 116:459–466

    PubMed  Google Scholar 

  • Kosano H, Takatani O (1988) Reduction of epidermal growth factor binding in human breast cancer cell lines by an alkyl-lysophospholipid. Cancer Res 48:6033–6036

    PubMed  Google Scholar 

  • Maurer HR, Hilgard P (1992) Induction of tumor cell differentiation by alkylphosphocholines: a new approach for in vitro screening. Prog Exp Tumor Res 34:90–97

    PubMed  Google Scholar 

  • Moncada S (1991) Nitric oxide-physiology, pathophysiology and pharmacology. Pharmacol Rev 43:109–113

    PubMed  Google Scholar 

  • Nathan CF, Hibbs JB (1992) Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr Opin Immunol 3:65–72

    Google Scholar 

  • Noseda A, White JG, Godwin PL, Jerome WG, Modest EJ (1989) Membrane damage in leukemic cells induced by ether and ester lipids: an electron microscopic study. Exp Mol Pathol 50:69–72

    PubMed  Google Scholar 

  • Shoji M, Raynor RL, Fleer EAM, Eibl H, Vogler WR, Kuo JF (1991) Effects of hexadecylphosphocholine on protein kinase C and TPA-induced differentiation of HL 60 cells. Lipids 26:145–149

    PubMed  Google Scholar 

  • Singh RK, Fidler IJ (1993) Synergism between human recombinant monocyte chemotactic and activating factor and LPS for activation of antitumor properties in human blood monocytes. Lymphokine and Cytokine Res 12(5):285–291

    Google Scholar 

  • Stuehr DJ, Marletta MA (1985) Mammalian nitrite biosynthesis: mouse macrophages produce nitrite and nitrate in response to E. coli lipopolysaccaride. Proc Natl Acad Sci USA 82:7738–7742

    PubMed  Google Scholar 

  • Unger C, Eibl H (1991) Hexadecylphosphocholine: preclinical and the first clinical results of a new antitumor drug. Lipids 26:1412–1417

    PubMed  Google Scholar 

  • Yamamoto N, Ngwenya BJ (1987) Activation of mouse peritoneal macrophages by lysophospholipids and ether derivates of neutral lipids and phospholipids. Cancer Res 47:2008–2013

    PubMed  Google Scholar 

  • Zeisig R, Arndt D, Brachwitz H (1990) Etherlipide Synthese und tumortherapeutische Verwendbarkeit. Pharmazie 45:809–818

    PubMed  Google Scholar 

  • Zeisig R, Fichtner I, Arndt D, Jungmann S (1991) Antitumor effects of alkylphosphocholines in different murine tumor models: use of liposomal preparations. Anticancer Drugs 2:411–417

    PubMed  Google Scholar 

  • Zeisig R, Jungmann S, Arndt D, Schütt A, Nissen E (1993) Antineoplastic activity in vitro of free and liposomal alkylphosphocholines. Anticancer Drugs 4:57–64

    PubMed  Google Scholar 

  • Zeisig R, Arndt D, Jungmann S, Daemen T (1994) Cytotoxic effects of alkylphosphocholines or alkylphosphocholine-liposomes and macrophages on tumor cells. Anticancer Res 14:1785–1790

    PubMed  Google Scholar 

  • Zeisig R, Rudolf M, Eue I, Arndt D (1995) Influence of hexadecylphosphocholine on the release of tumor necrosis factor and nitroxide from peritoneal macrophages invitro. J Cancer Res Clin Oncol 121:69–75

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Partly supported by the Bundesministerium für Forschung und Technologie (9319564A)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eue, I., Zeisig, R. & Arndt, D. Alkylphosphocholine-induced production of nitric oxide and tumor necrosis factor α by U 937 cells. J Cancer Res Clin Oncol 121, 350–356 (1995). https://doi.org/10.1007/BF01225687

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01225687

Key words

Navigation