Skip to main content
Log in

The postmortem activation status of platelets

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Platelets are activated by substances from the subendothelial matrix in endothelial lesions or by factors in the plasma coagulation cascade. Conversely, activated platelets are potent activators of this cascade. Only activated platelets express the adhesion molecules Gp53, GMP140 and thrombospondin on the plasma membrane. The postmortem activation status of platelets, therefore, can be determined immunoelectron microscopically by immunogold labeling of antibodies against these glycoproteins. Our studies revealed that the vast majority of these antigens were located within the granules post-mortem, hence the platelets had not been activated. Thrombin-induced activation of platelets in vitro was only possible in the early postmortem interval, as demonstrated by labeling of the adhesion molecules on the plasma membrane. Later, such activaton was no longer possible even though thrombin-induced fibrin formation gave the appearance of “coagulated blood”. In forensic medicine, these findings can possibly be applied to distinguish intravital clotting from the postmortem coagulation phenomena and intravital hematomas from postmortemhematomas.

Zusammenfassung

Thrombozyten werden durch Substanzen der subendothelialen Matrix in Endothelläsionen oder aktivierte Faktoren der Plasmagerinnungskaskade aktiviert. Umgekehrt aktivieren aktivierte Thrombozyten die plasmatische Gerinnung. Nur aktivierte Thrombozyten exprimieren die Adhäsionsmoleküle Gp53, GMP140 und Thrombospondin auf der Plasmamembran, bei ruhenden Thrombozyten liegen sie intragranulär. Nach Markierung der Glykoproteine mit monoklonalen Antikörpern und Immunogoldlabeling waren Gp53, GMP140 und Thrombospondin an Thrombozyten im Leichenblut elektronen-mikroskopisch ganz überwiegend intragranulär darzustellen. Der intragranuläre Nachweis der Glykoproteine zeigt, daß die Thrombozyten im Leichenblut nicht aktiviert waren. Die Thrombozyten im Leichenblut waren nur im frühen postmortalen Intervall aktivierbar, sie exprimierten dann die Markierungen der Adhäsionsmoleküle auf der Plasmamembran. Später waren sie in vitro auch dann nicht mehr aktivierbar, wenn durch Zugabe von Thrombin der Ausfall von Fibrin provoziert wurde und der Aspekt “geronnenen Blutes” entstand. In der forensischen Medizin könnten diese Befunde hilfreich sein zur Differenzierung intravitaler und postmortaler Gerinnungsvorgänge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berg SP (1950) Das postmortale Verhalten des Blutes (Beiträge zur Pharmakologie und Fermentkinetik des Blutes bei verschiedenen Todesursachen, insbesondere der Erstickung) Dtsch Z Ges Gerichtl Med 40:1–75

    Google Scholar 

  2. Harms D (1981) Postmortale Fibrinolyse beim Menschen. Fischer, Stuttgart

    Google Scholar 

  3. Gilg T, Klaubert W, Schönbauer R, Gollwitzer R, Kauert G, Eisenmenger W, Wilmanns B (1986) Untersuchungen über postmortal im Blut ablaufende, koagulatorische und fibrinolytische Reaktionsmechanismen. Beitr Gerichtl Med 44: 399–405

    Google Scholar 

  4. Detwiler TC, Chang AC, Speziale MV, Brown PC, Miller JJ, Chen (1992) Complexes of thrombin with proteins secreted by activated platelets. Semin Thromb Hemost 18:60–66

    Google Scholar 

  5. Wencel-Drake JD, Painter RG, Zimmerman TS, Ginsberg MH (1985) Ultrastructural localization of human thrombospondin, fibrinogen, fibronectin, and von Willebrand's factor in frozen thin section. Blood 68:929–938

    Google Scholar 

  6. Lindop GBM, Percy-Robb IW, Walker ID (1992) Disturbances of body fluids, haemostasis and the flow of blood. In: MacSween NM, Whaley K (eds) Muir's textbook of pathology, 13th edn. Edward Arnold, London Melbourne Auckland, pp 73–111

    Google Scholar 

  7. Rohrer MJ, Kestin AS, Ellis PA, Barnard MR; Rodino L, Breckwoldt WL, Li JM, Michelson AD (1992) High-dose heparin suppresses platelet alpha granule secretion. J Vase Surg 15:1000–1008

    Google Scholar 

  8. Ellis EF, Oelz O, Roberts LJ 2nd, Payne NA, Sweetman BJ, Nies AS, Oates JA (1976) Coronary arterial smooth muscle contraction by a substance released from platelets: evidence that it is thromboxane A2. Science 193:1135–1137

    Google Scholar 

  9. Cramer EM, Vainchenker W, Vinci G, Guichard J, BretonGorius J (1985) Gray platelet syndrome: immunoelectron microscopic localization of fibrinogen and von Willebrands factor in platelets and megakaryocytes. Blood 66:1309–1316

    Google Scholar 

  10. Stenberg PE, Shuman MA, Levine SP, Baiton DF (1984) Optimal techniques for the immunocytochemical demonstration of ß-thromboglobulin, platelet factor 4 and fibrinogen in the alpha-granules of unstimulated platelets. Histochem J 16: 983–1001

    Google Scholar 

  11. Moddermann PW (1989) Cluster report: CD63. In: Knapp W, Dorken B, Gilks WR, Rieber EP, Schmidt RE, Stein H, Von dem Borne AEGKr (eds) Fourth international workshop and conference on human leucocyte differentiation antigens, Leucocyte Typing IV - white cell differentiation antigens, part 6: platelets, Oxford University Press, New York, p 1042

    Google Scholar 

  12. Metzelaar MJ, Wijngaard PL, Peters PJ, Sixma JJ, Nieuwenhuis HK, Clevers HC (1991) CD63 antigen. A novel lysosomal membrane glycoprotein, cloned by a screening procedure for intracellular antigens in eukaryotic cells. J Biol Chem 266: 3239–3245

    Google Scholar 

  13. Nieuwenhuis K, Oosterhout JJ, Van Rozemuller E, Van Iwaarden F, Sixma JJ (1987) Studies with a monoclonal antibody against activated platelets: evidence that a secreted 53.000molecular weight lysosome-like granule protein is exposed on the surface of activated platelets in the circulation. Blood 70: 838–845

    Google Scholar 

  14. Metzelaar MJ, Schuurman H-J, Heijnen HFG, Sixma JJ, Nieuwenhuis HK (1991) Biochemical and immunohistochemical characteristics of CD62 and CD63 monoclonal antibodies. Virchows Arch B Cell Pathol 61:269–277

    Google Scholar 

  15. Von dem Borne AEGKr, Moddermann PW, De Bruijne-Admiraal LG, Nieuwenhuis HK (1989) Joint report of the platelet section. Platelet antibodies, the overall results. In: Knapp W, Dorken B, Gilks WR, Rieber EP, Schmidt RE, Stein H, Von dem Borne AEGKr (eds) Fourth international workshop and conference on human leucocyte differentiation antigens, Leucocyte Typing IV - white cell differentiation antigens, part 6: platelets, Oxford University Press, New York, p 951

    Google Scholar 

  16. McEver RP, Beckstead JH, Moore KL, Marshall-Calson L, Baiton DF (1989) GMP-140, a platelet alpha-granule membrane protein, is also synthesized by vascular endothelial cells and is localized in Weibel-Palade bodies. J Clin Invest 84: 92–99

    Google Scholar 

  17. Hsu-Lin SC, Berman CL, Furie BC, August D, Furie B (1984) A platelet membrane protein expressed during platelet activation and secretion. Studies using a monoclonal antibody specific for thrombin-activated platelets. J Biol Chem 259: 9121–9126

    Google Scholar 

  18. Stenberg PE, McEver RP, Shuman MA, Jacques YV, Baiton DF (1985) A platelet alpha-granule membrane protein (GMP140) is expressed on the plasma membrane after activation. J Cell Biol 101: 880–886

    Google Scholar 

  19. Berman CL, Yeo EL, Wencel-Drake JD, Furie BC, Ginsberg MH, Furie B (1986) A platalet alpha granule membrane protein that is associated with the plasma membrane after activation. J Clin Invest 78:130–137

    Google Scholar 

  20. McEver RP (1991) GMP-140 a receptor for neutrophils and monocytes on activated platelets and endothelium. J Cell Biochem 45:156–161

    Google Scholar 

  21. de Bruijne-Admiraal LG, Moddermann PW, Von dem Borne AEGKr, Sonnenberg A (1992) P-Selectin mediates Ca2+-dependent adhesion of activated platelets to many different types of leucocytes: detection by flow cytometry. Blood 80:134–142

    Google Scholar 

  22. Legrand C, Thibert V, Dubernard V, Begault B, Lawler J (1992) Molecular requirements for the interaction of thrombospondin with thrombin-activated human platelets: modulation of platelet aggregation. Blood 79: 1995–2003

    Google Scholar 

  23. Hogg PJ, Stenflo J, Mosher DF (1992) Thrombospondin is a slow tight-binding inhibitor of plasmin. Biochemistry 31: 265–269

    Google Scholar 

  24. Metzelaar MJ, Sixma JJ, Nieuwenhuis HK (1989) A new cluster of activation-depend mAb recognizing a 53-Kda lysosomelike granule protein, expressed on the plasma membrane after activation. In: Knapp W, Dorken B, Gilks WR, Rieber EP, Schmidt RE, Stein H, Von dem Borne AEGKr (eds) Fourth international workshop and conference on human leucocyte differentiation antigens, Leucocyte Typing IV - white cell differentiation antigens, part 6: platelets: Oxford University Press, New York, pp 1043–1044

    Google Scholar 

  25. Moddermann PW (1989) Cluster report: CD62. In: Knapp W, Dorken B, Gilks WR, Rieber EP, Schmidt RE, Stein H, Von dem Borne AEGKr (eds) Fourth international workshop and conference on human leucocyte differentiation antigens, Leucocyte Typing IV - white cell differentiation antigens, part 6: platelets. Oxford University Press, New York pp 1038–1039

    Google Scholar 

  26. McLaren KM (1983) Immunohistochemical localisation of thrombospondin in human megakaryocytes and platelets. J Clin Pathol 36: 197–199

    Google Scholar 

  27. Reynolds ES (1963) The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J Cell Biol 17: 208–212

    Google Scholar 

  28. Escolar G, White JG (1991) The platelet open canalicular system: a final common pathway. Blood Cells 17:467–485

    Google Scholar 

  29. Penttilä A, Laiho K (1981) Autolytic changes in blood cells of human cadavers. 11. Morphological studies. Forensic Sci Int 17:121–132

    Google Scholar 

  30. Tschoepe D, Spangenberg P, Esser B, Schwippert B, Kehrel B, Roesen P, Gries FA (1990) Flow-cytomeric detection of surface membrane alterations and concomitant changes in the cytoskeletal actin status of activated platelets. Cytometry 11:652–656

    Google Scholar 

  31. Tschoepe D, Roesen P, Schwippert B, Kehrel B, Schauseil J, Esser J, Gries FA (1990) Platelet analysis using flowcytometric procedures. Platelets 1: 127–133

    Google Scholar 

  32. De Bruijne-Admiraal LG, Moddermann PW, von dem Borne AEGKR, Sonnenberg A (1992) P-selectin mediates CA2+- dependent adhesion of activated platelets to many different types of leucocytes: detection by flow cytomety. Blood 1:134–142

    Google Scholar 

  33. Stenberg PE, McEver RP, Shuman MA, Jacques YV, Baiton DF (1985) A platelet alpha-granule membrane protein (GMP140) is expressed on the plasma membrane after activation. J Cell Biol 101: 880–886

    Google Scholar 

  34. Hourdille P, Hasitz M, Belloc F, Nurden AT (1985) Immunocytochemical study of the binding of fibrinogen and thrombospondin to ADP- and thrombin-stimulated human platelets. Blood 65:912–920

    Google Scholar 

  35. Corral L, Singer MS, Macher BA, Rosen SD (1990) Requirement for sialic acid on neutrophils in a GMP-140 (PADGEM) mediated adhesive interaction with activated platelets. Biochem Biophys Res Commun 172:1349–1356

    Google Scholar 

  36. Metzelaar MJ, Korteweg J, Sixma JJ, Nieuwenhuis HK (1993) Comparison of platelet membrane markers for the detection of platelet activation in vitro and during platelet storage and cardiopulmonary bypass surgery. J Lab Clin Med 121:579–587

    Google Scholar 

  37. Johnston GI, Picket EB, McEver RP, George JN (1987) Heterogeneity of platelet secretion in response to thrombin demonstrated by fluorescence flow cytometry. Blood 69: 1401–1403

    Google Scholar 

  38. Fijnheer R, Moddermann PW, Veldman H, Ouwehand WH, Nieuwenhuis HK, Roos D, de Korte D (1990) Detection of platelet activation with monoclonal antibodies and flow cytometry. Changes during platelet storage. Transfusion 30:20–25

    Google Scholar 

  39. Grijzenhout MA, Aarts-Riemens MI, Akkerman JW, Nieuwenhuis HK, van Weelden H, van Prooijen HC (1993) Ultraviolet-B irradiation of platelets induces a dose-dependent increase in the expression of platelet activation markers with storage. Br J Haematol 83:627–632

    Google Scholar 

  40. Abrams C, Shattil SJ (1991) Immunological detection of activated platelets in clinical disorders. Thromb Haemost 65:467–473

    Google Scholar 

  41. Juji T, Kano K, Milgrom F (1972) Mixed agglutination with platelets. Int Arch Allergy Immunol 42:474–484

    Google Scholar 

  42. Dutcher JP, Schiffer CA, Aisner J, Wiernik PH (1981) Alloimmunization following platelet transfusion: the absence of a dose-response relationship. Blood 57:395–405

    Google Scholar 

  43. Dunlop LC, Skinner MP, Bendall LJ, Favaloro EJF, Castaldi PA, Gorman JJ, Gamble JR, Vadas MA, Berndt MC (1992) Characterization of GMP-140 (P-selectin) as a circulating plasma protein. J Exp Med 175:1147–1150

    Google Scholar 

  44. Handa K, Nudelman ED, Stroud MR, Shiozawa T, Hakomori S (1991) Selectin GMP-140 (CD62, PADGEM) binds to sialosyl-Le(a) and sialosyl-Le(x), and sulfated glycans modulate this binding. Biochem Biophys Res Commun 181:1223–1230

    Google Scholar 

  45. Moore KL, Varki A, McEver RP (1991) GMP-140 binds to a glycoprotein on human neutrophils: evidence for a lectin-like interaction. J Cell Biol 112:491–499

    Google Scholar 

  46. Dubernard V, Legrand C (1991) Characterization of the binding of thrombospondin to human platelets and its association with the platelet cytoskeleton. J Lab Clin Med 118:446–457

    Google Scholar 

  47. Wolff R, Plow EF, Ginsberg MH (1986) Interaction of thrombospondin with resting and stimulated platelets. J Biol Chem 261:6840–6846

    Google Scholar 

  48. Watkins SC, Raso V, Slayter HS (1990) Immunoelectron-microscopic studies of human platelet thrombospondin, von Willebrand factor, and fibrinogen redistribution during clot formation. Histochem J 22:507–518

    Google Scholar 

  49. Morgenstern E, Ruf A, Patscheke H (1992) Transport of antiglycoprotein IIb/IIIa- antibodies into the alpha granules of unstimulated human blood platelets. Thromb Haemost 67:121–125

    Google Scholar 

  50. Rinder HM, Murphy M, Mitchell JG, Stocks J, Ault KA, Hillman RS (1991) Progressive platelet activation with storage: evidence for shortened survival of activated platelets after transfusion. Transfusion 31:409–414

    Google Scholar 

  51. Greco NJ, Jamieson GA (1991) High and moderate affinity pathways for α-thrombin-induced platelet activation. Proc Soc Exp Biol Med 198:792–799

    Google Scholar 

  52. Friedrich G (1986) Forensische postmortale Biochemie. In: Forster B (ed) Praxis der Rechtsmedizin, Thieme, Stuttgart, pp 789–831

    Google Scholar 

  53. Mueller-Eckhardt C (1988) Therapie mit Thrombozyten. In: Mueller-Eckhardt C (ed) Transfusionsmedizin, Springer, Berlin Heidelberg New York, pp 358–372

    Google Scholar 

  54. Bertolini F, Porretti L, Lauri E, Rebulla P, Sirchia G (1993) Role of lactate in platelet storage lesion. Vox Sang 65:194–198

    Google Scholar 

  55. Slichter SJ, Harker LA (1976) Preparation and storage of platelet concentrates. Storage variables influencing viability and function. Br J Haematol 34:395–419

    Google Scholar 

  56. Spangenberg P, Till U, Gschmeissner S, Crawford N (1987) Changes in the distribution and organisation of platelet actin induced by diamide and its functional consequences. Br J Haematol 67:443–450

    Google Scholar 

  57. Behnke O (1976) The blood platelet, a potential smooth muscle cell. In: Preey SV, Margereth A, Adelstein RS (eds) Contractile systems in non-muscle cells. Elsevier, Amsterdam New York, pp 105–115

    Google Scholar 

  58. Lüscher EF, Bettex-Galland M (1972) Thrombosthenin, the contractile protein of blood platelets. Pathol Biol [Suppl] 20:89–101

    Google Scholar 

  59. Bennett JS (1992) Mechanisms of platelet adhesion and aggregation: an update. Hosp Pract [Off Ed] 27:124–126, 129–130, 133–138, 140

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomsen, H., Krisch, B. The postmortem activation status of platelets. Int J Leg Med 107, 111–117 (1994). https://doi.org/10.1007/BF01225596

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01225596

Key words

Schlüsselwörter

Navigation