Skip to main content
Log in

Fifty years of research onN-acetyl-2-aminofluorene, one of the most versatile compounds in experimental cancer research

  • Guest Editorial
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Summary

It is just about 50 years since the publication of the report on the toxicity and carcinogenicity of the potent carcinogenN-acetyl-2-aminofluorene (AAF). In 1940 very few reports on the carcinogenic activity of chemical compounds in experimental animals were available. The discovery of pure chemicals as carcinogens, such as AAF, azo dyes and benzo[a]pyrene, provided cancer researchers with a number of tools whereby the progressive changes involved in the induction of cancer could be studied in experimental systems. Contrary to the results with other carcinogens then known, AAF induced numerous types of tumors, but not at the site of application. This finding stimulated a great deal of interest in its use as an experimental carcinogen to study its metabolic fate and mechanism of action. During the following years an ever increasing number of reports appeared on the carcinogenicity of AAF in various species, on its metabolic fate, on the interaction of reactive metabolites with nucleic acids and proteins, and on its mutagenic activity. Particularly studies on the metabolism of AAF and the interaction with nucleic acids have contributed appreciably to our understanding of the mechanism of action of aromatic amines and also of other chemical carcinogens. It can be expected that AAF and its derivatives will continue to be used for specific applications in experimental cancer research. One of the most recent achievements is the preparation of site-specific AAF- and aminofluorene-modified DNA sequences for mutagenesis studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

AAF:

N-acetyl-2-aminofluorenem

References

  • Armier J, Mezzina M, Leng M, Fuchs RPP, Sarasin A (1988)N-acetoxy-N-2-acetylaminofluorene-induced damage on SV40 DNA: inhibition of DNA replication and visualization of DNA lesions. Carcinogenesis 9:789–795

    Google Scholar 

  • Baan RA, Lansbergen MJ, De Bruin PAF, Willems MI, Lohman PHM (1985) The organ-specific induction of DNA adducts in 2-acetylaminofluorene-treated rats, studied by means of a sensitive immunochemical method. Mutat Res 150:23–32

    Google Scholar 

  • Ball SS, Quaranata V, Shadravan F, Walford RL (1987) An ELISA for detection of DNA-bound carcinogen using a monoclonal antibody toN-acetoxy-2-acetylaminofluorene-modified DNA. J Immunol Methods 98:195–200

    Google Scholar 

  • Beland FA, Kadlubar FF (1990) Metabolic activation and DNA adducts of aromatic amines. In: Cooper CS, Grover PL (eds) Chemical carcinogenesis and mutagenesis. I. Springer, Berlin Heidelberg New York, pp 267–325

    Google Scholar 

  • Beland FA, Dooley KL, Jackson CD (1982) Persistence of DNA adducts in rat liver and kidney after multiple doses of the carcinogenN-hydroxy-2-acetylaminofluorene. Cancer Res 42:1348–1354

    Google Scholar 

  • Beland FA, Heflich RH, Howard PC, Fu PP (1985) The in vitro metabolic activation of nitro polycyclic aromatic hydrocarbons. In: Harvey RG (ed) Polycyclic hydrocarbons and carcinogenesis. ACS Symposium Series. American Chemical Society, Washington, pp 371–396

  • Broyde S, Hingerty BE (1983) Conformation of 2-aminofluorene-modified DNA. Biopolymers 22:2423–2441

    Google Scholar 

  • Bryant MS, Skipper PL, Tannenbaum SR, Maclure M (1987) Hemoglobin adducts of 4-aminobiphenyl in smokers and nonsmokers. Cancer Res 47:602–608

    Google Scholar 

  • Burnouf D, Koehl P, Fuchs RPP (1989) Single adduct mutagenesis: strong effect of the position of a single acetylaminofluorene aduct within a mutation hot spot. Proc Natl Acad Sci USA 86:4147–4151

    Google Scholar 

  • Cartwright RA, Glashan RW, Rogers HJ, Ahmad RA, Hall DB, Higgins E, Kahn MA (1982) Role ofN-acetyltransferase phenotypes in bladder carcinogenesis: a pharmacogenetic epidemiological approach to bladder cancer. Lancet II:842–846

    Google Scholar 

  • Clayson DB (1953) A working hypothesis for the mode of carcinogenesis of aromatic amines. Br J Cancer 7:460–471

    Google Scholar 

  • Clayson DB, Garner RC (1976) Carcinogenic aromatic amines and related compounds. In: Searle CE (ed) Chemical carcinogens. American Chemical Society, Washington, pp 366–461

    Google Scholar 

  • Cramer JW, Miller JA, Miller EC (1960)N-Hydroxylation: a new metabolic reaction observed in the rat with the carcinogen 2-acetylaminofluorene. J Biol Chem 235:885–888

    Google Scholar 

  • Deelman HT (1924) Die Entstehung des experimentellen Teerkrebses und die Bedeutung der Zellenregeneration. Z Krebsforsch 21:220–226

    Google Scholar 

  • Defrancq E, Pelloux N, Leterme A, Lhomme M-F, Lhomme J (1991) Interaction and reactivity of carcinogenicN-acetyl-N-(acyloxy)-2-aminofluorene with deoxyguanosine. An intramolecular approach. J Org Chem 56:4817–4819

    Google Scholar 

  • Den Engelse L, Van Benthem J, Scherer E (1990) Immunocytochemical analysis of in vivo DNA modification. Mutat Res 233:265–287

    Google Scholar 

  • Doll R (1972) Cancers related to smoking. In: Richardson RG (ed) Proceedings 2nd World Conference on Smoking and Health. Pitman, London, pp 10–23

    Google Scholar 

  • Farber E (1973) Hyperplastic liver nodules. Meth Cancer Res 7:345–375

    Google Scholar 

  • Farber E (1984) Cellular biochemistry of the stepwise development of cancer with chemicals. Cancer Res 44:5463–5474

    Google Scholar 

  • Foulds L (1969) Neoplastic development, vol 1. Academic Press, New York

    Google Scholar 

  • Foulds L (1975) Neoplastic development, vol 2. Academic Press, New York

    Google Scholar 

  • Friedewald WF, Rous P (1944) The initiating and promotion elements in tumor promotion. J Exp Med 80:101–125

    Google Scholar 

  • Fuchs RPP, Daune M (1974) Dynamic structure of DNA modified with the carcinogenN-acetoxy-N-2-acetylaminofluorene. Biochemistry 13:4435–4440

    Google Scholar 

  • Fuchs RPP, Bichara M, Koffel-Schwartz N (1988) Molecular mechanisms involved in mutagenesis induced byN-2-aminofluorene derivatives. In: King CM, Romano LJ, Schuetzle D (eds) Carcinogenic and mutagenic responses to aromatic amines and nitroarenes. Elsevier, Amsterdam, pp 373–384

    Google Scholar 

  • Giese RW, Vouros P (1990) Analysis of NO2-PAH DNA adducts by mass spectrometry. In: Howard PC, Hecht SS, Beland FA (eds) Nitroarenes, occurrence, metabolism and biological impact. Plenum, New York, pp 211–217

    Google Scholar 

  • Guigues M, Leng (1979) Reactivity of the antibodies to DNA modified by the carcinogenN-acetoxy-N-acetyl-2-aminofluorene. Nucleic Acids Res 6:733–744

    Google Scholar 

  • Gupta PK, Johnson DL, Reid TM, Lee M-S, Romano LJ, King CM (1989) Mutagenesis by single site-specific arylamine-DNA adducts. J Biol Chem 264:20120–21030

    Google Scholar 

  • Hein DW (1988) Acetylator genotype and arylamine-induced carcinogenesis. Biochem Biophys Acta 948:37–66

    Google Scholar 

  • Heringlake R, Kiese M, Renner G, Wenz W (1960)N-Oxydation von 2-Naphthylamin in vivo und Wirkungen von Oxydationsprodukten des 2-Naphthylamins. Naunyn-Schmiedebergs Arch Pharmakol Exp Pathol 239:370–382

    Google Scholar 

  • Hong S-J, Piette LH (1976) Electron spin resonance spin-label studies of intercalation of ethidium bromide and aromatic amine carcinogens in DNA. Cancer Res 36:1159–1171

    Google Scholar 

  • Hueper WC, Wiley FH, Wolfe HD, Ranta KE, Leming MF, Blood FR (1938) Experimental production of bladder tumors in dogs of β-naphthylamine. J Ind Hyg Toxicol 20:46–84

    Google Scholar 

  • Huitfeldt HS, Spangler EF, Baron J, Poirier MC (1987) Microfluorimetric determination of DNA adducts in immunofluorescent-stained liver tissue from rats fed 2-acetylaminofluorene. Cancer Res 47:2098–2102

    Google Scholar 

  • International Agency for Research on Cancer (1986) Tobacco smoking. IARC Monogr Eval Carcino Risk Hum 38

  • Jeffrey et al. (1980) In: Pullman B, Ts'o POP, Gelboin H (eds) Carcinogenesis: fundamental mechanisms and environmental effects. Reidel, Dordrecht, pp 565–578

    Google Scholar 

  • Johnson DL, Reid TM, Lee M-S, King CM, Romano LJ (1986) Preparation and characterization of a viral DNA molecule containing a site-specific 2-aminofluorene adduct: a new probe for mutagenesis by carcinogens. Biochemistry 25:449–456

    Google Scholar 

  • Kadlubar FF, Beland FA (1985) Chemical properties of ultimate carcinogenic metabolites of arylamines and arylamides. In: Harvey RG (ed) Polycyclic hydrocarbons and carcinogenesis. American Chemical Society, Washington, pp 341–370

    Google Scholar 

  • King CM, Reid TM, Tamura N, Gupta PK (1990) Mutagenic and biochemical consequences of the reaction of arylamines with DNA. In: Howard PC, Hecht SS, Beland FA (eds) Nitroarenes, occurrence, metabolism and biological impact. Plenum, New York, pp 95–103

    Google Scholar 

  • Kriek E (1965) On the interaction ofN-2-fluorenylhydroxylamine with nucleic acids. Biochem Biophys Res Commun 20:793–799

    Google Scholar 

  • Kriek E, Miller JA, Juhl U, Miller EC (1967) 8-(N-2-Fluorenylacetamido)-guanosine, an arylamidation reaction product of guanosine and the carcinogenN-acetoxy-N-2-fluorenylacetamide in neutral solution. Biochemistry 6:177–182

    Google Scholar 

  • Landegent JE, Jansen in de Wal N, Van Ommen G-JB, Baas F, Vijlder JJM de, Van Duyn P, Van der Ploegh M (1985) Chromosomal localization of a unique gene by nonautoradiographic in situ hybridization. Nature 317:175–177

    Google Scholar 

  • Lasko DD, Basu AK, Kadlubar FF, Evans FE, Lay Jr JO, Essigmann JM (1987) A probe for the mutagenic activity of the carcinogen 4-aminobiphenyl: synthesis and characterization of an M13mp 10 genome containing the major carcinogen-DNA adduct at a unique site. Biochemistry 26:3072–3081

    Google Scholar 

  • Leng M, Sage E, Fuchs RPP, Daune MP (1978) Antibodies to DNA modified by the carcinogenN-acetoxy-N-2-acetylaminofluorene. FEBS Lett 92:207–210

    Google Scholar 

  • Leng M, Ptak M, Rio P (1980) Conformations of acetylaminofluorene and aminofluorene modified guanosine and guanosine derivatives. Biochem Biophys Res Commun 96:1095–1102

    Google Scholar 

  • Levine AF, Fink LM, Weinstein IB, Grunberger D (1974) Effect ofN-2-acetylaminofluorene modification on the conformation of nucleic acids. Cancer Res 34:319–327

    Google Scholar 

  • Lutgerink JT, Retèl J, Westra JG, Welling MC, Loman H, Kriek E (1985) By-pass of the major aminofluorene-DNA adduct during in vivo replication of single- and double-stranded ϕX174 DNA treated withN-hydroxy-2-aminofluorene. Carcinogenesis 6:1501–1506

    Google Scholar 

  • Marroquin F, Farber E (1962) The apparent binding of radioactive 2-acetylaminofluorene to rat liver ribonucleic acid in vivo. Biochem Biophys Acta 55:403–405

    Google Scholar 

  • Menkveld GJ, Van der Laken CJ, Hermsen G, Kriek E, Scherer E, Den Engelse L (1985) Immunohistochemical localization ofO 6-ethyldeoxyguanosine and deoxyguanosin-8-yl-(acetyl)aminofluorene in liver sections of rats treated with diethylnitrosamine, ethylnitrosourea orN-acetylaminofluorene. Carcinogenesis 6:263–270

    Google Scholar 

  • Michaels ML, Reid TM, King CM, Romano LJ (1991) Accurate in vitro translesion synthesis byEscherichia coli DNA polymerase I (large fragment) on a site-specific, aminofluorene-modified template. Carcinogenesis 12:1641–1646

    Google Scholar 

  • Miller JA, Miller EG (1953) The carcinogenic amino-azo dyes. Adv Cancer Res 1:339–396

    Google Scholar 

  • Miller EC, Miller JA (1981) Searches for ultimate chemical carcinogens and their reactions with cellular macromolecules. Cancer 47:2327–2345

    Google Scholar 

  • Miller EC, Miller JA, Hartmann HA (1961)N-hydroxy-2-acetylaminofluorene: a metabolite of 2-acetylaminofluorene with increased carcinogenic activity in the rat. Cancer Res 21:815–824

    Google Scholar 

  • Miller EC, Miller JA, Enomoto M (1964) The comparative carcinogenicities of 2-acetylaminofluorene and itsN-hydroxy metabolite in mice, rats and guinea pigs. Cancer Res 24:2018–2032

    Google Scholar 

  • Mommsen S, Aagaard J (1983) Tobacco as a risk factor in bladder carcinogenesis. Carcinogenesis 4:335–338

    Google Scholar 

  • Mulder GJ, Wierckx FCJ, Wedzinga R, Meerman JHN (1990) Generation of reactive intermediates from 2-nitrofluorene that bind covalently to DNA, RNA and protein in vitro and in vivo in the rat. In: Howard PC, Hecht SS, Beland FA (eds) Nitroarenes, occurrence, metabolism and biological impact. Plenum, New York, pp 219–230

    Google Scholar 

  • Möller L, Rafter J, Törnquist S, Eriksson L, Beije B, Toftgård R, Midvedt T, Corrie M, Gustafsson J-Å (1990) In vivo metabolism and genotoxic effects of the air pollutant and marker for nitro-PAHs, 2-nitrofluorene. In: Howard PC, Hecht SS, Beland FA (eds) Nitroarenes, occurrence, metabolism and biological impact. Plenum, New York, pp 39–59

    Google Scholar 

  • Norman D, Abuaf P, Hingerty BE, Live D, Grunberger D, Broyde S, Patel DJ (1989) NMR and computational characterization of theN-(deoxyguanosin-8-yl)-aminofluorene adduct [(AF)G] opposite adenosine in DNA: (AF)G[syn].A[anti] pair formation and its pH dependence. Biochemistry 28:7462–7476

    Google Scholar 

  • Peraino C, Fry RJM, Staffeldt E (1971) Reduction and enhancement by phenobarbital of hepatocarcinogenesis induced in the rat by 2-acetylaminofluorene. Cancer Res 31:1506–1512

    Google Scholar 

  • Pfeifer AMA, Kasid U, Tsokos MG, Kessler DK, Weichselbaum RR, Thorgeirsson SS, Dritschilo A, Mark GE (1989) Implication of the c-raf-1 proto-oncogene in neoplastic transformation in vivo and in vitro. Cancer Cells 7:177–181

    Google Scholar 

  • Phillips DH (1990) Modern methods of DNA adduct determination. In: Cooper CS, Grover PL (eds) Chemical carcinogenesis and mutagenesis. I. Springer, Berlin Heidelberg New York, pp 503–546

    Google Scholar 

  • Pitot HC, Sirica AE (1980) The stages of initiation and promotion in hepatocarcinogenesis. Biochim Biophys Acta 605:191–215

    Google Scholar 

  • Poirier MC (1981) Antibodies to carcinogen-DNA adducts. J Natl Cancer Inst 67:515–519

    Google Scholar 

  • Poirer MC, Yuspa SH, Weinstein IB, Blobstein S (1977) Detection of carcinogen-DNA adducts by radioimmunoassay. Nature 270: 186–188

    Google Scholar 

  • Poirer MC, Hunt JM, True BA, Laishes BA, Young JF, Beland FA (1984) DNA adduct formation, removal and persistence in rat liver during one month of feeding 2-acetylaminofluorene. Carcinogenesis 5:1591–1596

    Google Scholar 

  • Rehn L (1895) Blasengeschwülste bei Fuchsin-Arbeitern. Arch Klin Chir 50:588–600

    Google Scholar 

  • Scherer E (1984) Neoplastic progression in experimental hepatocarcinogenesis. Biochim Biophys Acta 738:219–236

    Google Scholar 

  • Singer B, Essigmann JM (1991) Site-specific mutagenesis: retrospective and prospective. Carcinogenesis 12:949–955

    Google Scholar 

  • Spodheim-Maurizot M, Saint-Ruf R, Leng M (1979) Conformational changes induced in DNA by in vitro reaction withN-hydroxy-N-2-aminofluorene. Nucleic Acids Res 6:1683–1694

    Google Scholar 

  • Solt DB, Farber E (1976) New principle for the analysis of chemical carcinogenesis. Nature 263:701–703

    Google Scholar 

  • Talaska G, Al-Juburi AZSS, Kadlubar FF (1991) Smoking related carcinogen-DNA adducts in biopsy samples of human urinary bladder: identification ofN-(deoxyguanosine-8-yl)-4-aminobiphenyl as a major adduct. Proc Natl Acad Sci USA 88:5350–5354

    Google Scholar 

  • Tchen P, Fuchs RPP, Sage E, Leng M (1984) Chemically modified nucleic acids as immunodetectable probes in hybridization experiments. Proc Natl Acad Sci USA 81:3466–3470

    Google Scholar 

  • Van der Laken CJ, Hagenaars AM, Hermsen G, Kriek E, Kuipers AJ, Nagel J, Scherer E, Welling M (1982) Measurement ofO 6-ethyldeoxyguanosine andN-(deoxyguanosin-8-yl)-N-acetyl-2-aminofluorene in DNA by high-sensitive enzyme immunoassays. Carcinogenesis 3:569–572

    Google Scholar 

  • Van Houte LPA, Bokma JT, Lutgerink JT, Westra JG, Retèl J, Van Grondelle R, Blok J (1987) An optical study of the conformation of the aminofluorene-DNA complex. Carcinogenesis 8:759–766

    Google Scholar 

  • Vineis P, Caporaso N, Tannenbaum SR, Skipper PL, Glogowski J, Bartsch H, Coda M, Talaska G, Kadlubar FF (1990) Acetylation phenotype, carcinogen-hemoglobin adducts, and cigarette smoking. Cancer Res 50:3002–3004

    Google Scholar 

  • Vousden KH, Bos JL, Marshall CJ, Phillips DH (1986) Mutations activating human c-Ha-ras-1 proto-oncogne (HRAS1) induced by chemical carcinogens and depurination. Proc Natl Acad Sci USA 83:1222–1226

    Google Scholar 

  • Watson JD, Crick FHC (1953) Molecular structure of nucleic acids. A structure for deoxyribose nucleic acid. Nature 171:737–738

    Google Scholar 

  • Weisburger EK, Weisburger JH (1958) Chemistry, carcinogenicity and metabolism of 2-fluorenamine and related compounds. Adv Cancer Res 5:331–431

    Google Scholar 

  • Weston A, Caporaso NE, Hoover RN, Tannenbaum SR, Skipper PL, Resau JH, Trump BF, Harris CC (1991) Measurement of 4-aminobiphenyl-hemoglobin adducts in lung cancer cases and controls. Proc Am Assoc Cancer Res 32:1329

    Google Scholar 

  • Westra JG, Visser A, Tulp A (1982) Binding and repair of 2-acetylaminofluorene adducts in distinct liver cell populations. Environ Health Perspect 49:87–91

    Google Scholar 

  • Wilson RH, DeEds F, Cox AJ (1941) The toxicity and carcinogenicity of 2-acetaminofluorene. Cancer Res 1:595–608

    Google Scholar 

  • Wiseman RW, Stowers SJ, Miller EC, Anderson MW, Miller JA (1986) Activating mutations of the c-Ha-ras-protooncogene in chemically induced hepatomas of the male B6C3F mouse. Proc Natl Acad Sci USA 83:5825–5829

    Google Scholar 

  • Zielinska B, Arey J, Atkinson R (1990) The atmospheric formation of nitroarenes and their occurrence in ambient air. In: Howard PC, Hecht SS, Beland FA (eds) Nitroarenes, occurrence, metabolism and biological impact. Plenum, New York, pp 73–84

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The “Journal of Cancer Research and Clinical Oncology” publishes in loose succession “Editorials” and “Guest editorials” on current and/or controversial problems in experimental and clinical oncology. These contributions represent exclusively the personal opinion of the author The Editors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kriek, E. Fifty years of research onN-acetyl-2-aminofluorene, one of the most versatile compounds in experimental cancer research. J Cancer Res Clin Oncol 118, 481–489 (1992). https://doi.org/10.1007/BF01225261

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01225261

Key words

Navigation