Skip to main content
Log in

On nonnegative solvability of linear operator equations

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

LetE be a Banach lattice having order continuous norm. Suppose, moreover,T is a nonnegative reducible operator having a compact iterate and which mapsE into itself. The purpose of this work is to extend the previous results of the authors, concerning nonnegative solvability of (kernel) operator equations on generalL p-spaces. In particular, we provide necessary and sufficient conditions for the operator equation λx=T x+y to possess a nonnegative solutionxεE wherey is a given nonnegative and nontrivial element ofE and λ is any given positive parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Aliprantis and O. Burkinshaw, Positive Operators, Academic Press, Inc.: Orlando, 1985.

    Google Scholar 

  2. F. R. Gantmacher, The Theory of Matrices, Vol. II, Gosud. Izdat. Techn.-Theor. Lit., Moscow (translated by K. Hirsch, Chelsea, New York, 1959).

    Google Scholar 

  3. R. Jang and H. D. Victory, Jr., On nonnegative solvability of linear integral equations,Linear Algebra Appl. 165 (1992), 197–228.

    Google Scholar 

  4. ——, On the ideal structure of positive, eventually compact linear operators on Banach lattices,Pacific J. Math. 157 (1993), 57–85.

    Google Scholar 

  5. ——, Frobenius Decomposition of Positive Compact Operators,Positive Operators, Riesz Spaces, and Economics, Springer Studies in Economic Theory, Vol.2, 195–224. Springer Verlag, New York, Heidelberg, Berlin, Tokyo, 1991.

    Google Scholar 

  6. S. Karlin, A First Course in Stochastic Processes, Academic Press, New York, San Francisco, London, 1975.

    Google Scholar 

  7. W. A. J. Luxemburg and A. C. Zaanen, Notes on Banach function spaces, XI,Indag. Math. 26 (1964), 507–518.

    Google Scholar 

  8. ——, Notes on Banach function spaces XIV,Indag. Math. 27 (1965), 230–248.

    Google Scholar 

  9. P. Nelson, Jr., Subcriticality for transport of multiplying particles in a slab,J. Math. Anal. Appl. 35, (1971), 90–104.

    Google Scholar 

  10. ——, The structure of a positive linear integral operator,J. London Math. Soc. (2)8 (1974), 711–718.

    Google Scholar 

  11. U. G. Rothblum, Algebraic eigenspaces of nonnegative matrices,Linear Algebra and Appl. 12 (1975), 281–292.

    Google Scholar 

  12. H. H. Schaefer, Banach Lattices and Positive Operators, Springer-Verlag, New York, Heidelberg, Berlin, 1974.

    Google Scholar 

  13. R. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, N. J., 1962.

    Google Scholar 

  14. H. D. Victory, Jr., On linear integral operators with nonnegative kernels,J. Math. Anal. Appl. 89 (1982), 420–441.

    Google Scholar 

  15. H. D. Victory, Jr., The structure of the algebraic eigenspace to the spectral radius of eventually compact, nonnegative integral operators,J. Math. Anal. Appl. 90 (1982), 484–516.

    Google Scholar 

  16. H. D. Victory, Jr., On nonnegative solutions of matrix equations,SIAM J. Alg. Disc. Meth. 6 (1985), 406–412.

    Google Scholar 

  17. A. C. Zaanen,Linear Analysis, North-Holland, Amsterdam, 1964.

    Google Scholar 

  18. —,Riesz Spaces II, North-Holland, Amsterdam, New York, Oxford, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang-Lewis, RJ., Victory, H.D. On nonnegative solvability of linear operator equations. Integr equ oper theory 18, 88–108 (1994). https://doi.org/10.1007/BF01225214

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01225214

AMS (MOS) subject classifications

Navigation