Journal of Soviet Mathematics

, Volume 7, Issue 6, pp 953–973 | Cite as

The geometry of normed spaces

  • M. I. Kadets


Normed Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    S. V. Bochkarev, “The existence of a basis in the space of functions, analytic in a disk, and some properties of Franklin systems,” Mat. Sb.,95, No. 1, 3–18 (1974).Google Scholar
  2. 2.
    M. Sh. Braverman, “On geometric properties of symmetric spaces,” Sib. Mat. Zh.,15, No. 3, 675–679 (1974).Google Scholar
  3. 3.
    Bui-Min-Chi and V. I. Gurarii, “Some characteristics of normed spaces and their application to the generalized Parseval's equation,” Teor. F-tsii, Funkts. Analiz Ikh Prilozh. Resp. Nauch. Sb.,8, 74–91 (1969).Google Scholar
  4. 4.
    B. E. Veits, “On a class of vector bases and bases of subspaces,” Sib. Mat. Zh.,14, No. 5, 933–950 (1973).Google Scholar
  5. 5.
    V. F. Gaposhkin, “On Haar systems, as absolute bases in Lp[0,1],” Mat. Zametki,15, No. 2, 191–196 (1974).Google Scholar
  6. 6.
    I. M. Glazman and Yu. I. Lyubich, Finite-Dimensional Linear Analysis in Problems [in Russian], Nauka, Moscow (1969).Google Scholar
  7. 7.
    B. Grünbaum, Studies in Combinatorial Geometry and the Theory of Convex Bodies [Russian translation], Nauka, Moscow (1971).Google Scholar
  8. 8.
    V. I. Gurarii and N. I. Gurarii, “On a sequential property of the space Z1,” Mat. Issled. Kishinev, Akad. Nauk Mold. SSR,4, No. 3, 140–145 (1969).Google Scholar
  9. 9.
    V. I. Gurarii and N. I. Gurarii, “On bases in uniformly convex and uniformly smooth Banach spaces,” Izv. Akad. Nauk SSSR. Ser. Mat.,35, No. 1, 210–215 (1971).Google Scholar
  10. 10.
    V. I. Gurarii, M. I. Kadets, and V. I. Matsaev, “On the distance between finite-dimensional analogues of the spaces Lp,” Mat. Sb.,70, No. 4, 481–489 (1966).Google Scholar
  11. 11.
    V. I. Gurarii, M. I. Kadets, and V. I. Matsaev, “On the dependence of some properties of Minkowski spaces on asymmetry,” Mat. Sb.,71, No. 1, 24–29 (1966).Google Scholar
  12. 12.
    M. I. Gurarii, “On sequences of coefficients of expansions with respect to bases in Hilbert and Banach spaces,” Izv. Akad. Nauk SSSR, Ser. Mat.,35, No. 1, 216–223 (1971).Google Scholar
  13. 13.
    N. I. Gurarii, “Some theorems on bases in Hilbert and Banach spaces,” Dokl. Akad. Nauk SSSR,193, No. 5, 974–977 (1970).Google Scholar
  14. 14.
    N. I. Gurarii, “On p-Hilbert and p-Bessel systems,” Mat. Issled. Kishenev, Akad. Nauk Mold. SSR,6, No. 1, 162–167 (1971).Google Scholar
  15. 15.
    N. I. Gurarii, “Analogues of Parseval's equation for nonorthogonal bases in Hilbert spaces,” in: Transactions of the Fourth Winter School in Mathematical Programming and Related Questions, Drogobych 1971 [in Russian], Vol. 4, Moscow (1972), pp. 50–53.Google Scholar
  16. 16.
    N. I. Gurarii and V. I. Liokumovich, “On the stability of orthogonal bases in uniformly convex spaces,” Izv. Vyssh. Uchebn. Zaved. Mat.,10, 23–26 (1972).Google Scholar
  17. 17.
    L. A. Gurevich, “Semiabsolute bases,” in: Transactions of the NII Mathematics [in Russian], Vol. 1, Voronezh. Univ., (1971), pp. 44–59.Google Scholar
  18. 18.
    I. K. Daugavet, “Some applications of the generalized Martsinkevich-Berman identity,” Vestn. Leningrad. Univ.,19, No. 4, 59–64 (1968).Google Scholar
  19. 19.
    L. A. Ivanov, “Some two-dimensional Banach spaces with symmetric inclination,” Teor. F-tsii, Funkts. Analiz Ikh Prilozh. Resp. Nauch. Sb.,6, 66–67 (1968).Google Scholar
  20. 20.
    M. I. Kadets and B. S. Mityagin, “Complementable subspaces of Banach spaces,” Usp. Mat. Nauk,28, No. 6, 77–94 (1973).Google Scholar
  21. 21.
    M. I. Kadets and M. G. Snobar, “On some functionals on Minkowski compacta,” Mat. Zametki,10, No. 4, 453–457 (1971).Google Scholar
  22. 22.
    B. D. Kotlyar, “On weak convergence in Orlicz spaces,” Ukr. Mat. Zh.,23, No. 2, 240–244 (1971).Google Scholar
  23. 23.
    V. V. Kuchai, “On the linear dimension of Orliez coordinate spaces,” in: Reports of the Third Conference, Rostov Scientific Mathematical Society [in Russian], Vol. 1, Rostov-on-the-Don (1969), pp. 18–26.Google Scholar
  24. 24.
    P. A. Kuchment, “On complementable subspaces with symmetric bases,” Dokl. Akad. Nauk SSSR,208, No. 5, 1027–1030 (1973).Google Scholar
  25. 25.
    V. I. Liokumovich, “Some theorems from the geometry of Minkowski spaces,” Teor. Funktsii, Funkts. Anal. Ikh Pril. Resp. Mezhved. Temt. Nauch. Sb.,14, 117–126 (1971).Google Scholar
  26. 26.
    V. D. Mil'man, “Geometric theory of Banach spaces. Part I. Theory of bases and minimal systems,” Usp. Mat. Nauk,25, No. 3, 113–174 (1970).Google Scholar
  27. 27.
    V. D. Mil'man, “New proof of a theorem of A. Dvoretzky on sections of convex bodies,” Funktsional'. Analiz Ego Prilozhen,5, No. 4, 28–37 (1971).Google Scholar
  28. 28.
    V. D. Milman, “Geometric theory of Banach spaces. Part II. Geometry of the unit sphere,” Usp. Mat. Nauk,26, No. 6, 73–149 (1971).Google Scholar
  29. 29.
    V. D. Mil'man, “The Banach-Mazur distance and geometric properties of B-spaces,” Teor. Funktsii, Funkts. Analiz Ikh Pril. Resp. Mezhved. Temt. Nauch. Sb.,19, 23–32 (1974).Google Scholar
  30. 30.
    A. M. Olevskii, “On operators, producing conditional bases in Hilbert spaces,” Mat. Zametki,12, No. 1, 73–84 (1972).Google Scholar
  31. 31.
    A. Pelczynski, Linear Extensions, Linear Averages, and Their Application to the Linear Topological Classification of Spaces of Continuous Functions [Russian translation], Mir, Moscow (1970).Google Scholar
  32. 32.
    A. Pelczynski, “On some problems of Banach,” Usp. Mat. Nauk,28, No. 6, 67–75 (1973).Google Scholar
  33. 33.
    A. Pelczynski and E. Figel', “On the method of Enflo for constructing Banach spaces without the approximation property,” Usp. Mat. Nauk,28, No. 6, 95–108 (1973).Google Scholar
  34. 34.
    E. D. Positsel'skii, “Protective constants of symmetric spaces,” Mat. Zametki,15, No. 5, 719–727 (1974).Google Scholar
  35. 35.
    S. A. Rakov, “On Banach spaces in which Orlicz's theorem is false,” Mat. Zametki,14, No. 1, 101–106 (1973).Google Scholar
  36. 36.
    M. G. Snobar, “On p-absolutely summing constants,” Teor. Funktsii, Funkts. Analiz Ikh Prilozh. Resp. Mezhved. Nauch. Sb.,16, 38–41 (1972).Google Scholar
  37. 37.
    Yu. N. Subbotin, “On bases in C[0, 2π],” Tr. Tsentr. Zonal'n. Ob″edin. Mat. Kafedr Kalinin. Gos. Pedagog. Inst.,1, 141–144 (1970).Google Scholar
  38. 38.
    E. V. Tokarev, “On the linear dimension of some Banach spaces of sequences,” Teor. Funktsii, Funkts. Analiz Ikh Pril. Resp. Mezhved. Temat. Sb.,19, 90–101 (1974).Google Scholar
  39. 39.
    B. S. Tsirel'son, “970-01 or co cannot be imbedded in every Banach space,” Funktsional'. Analiz Ego Prilozhen,8, No. 2, 57–60 (1974).Google Scholar
  40. 40.
    I. S. Édel'shtein, “Complementable subspaces and absolute bases inl p+l 2,” Teor. Funktsii, Funkts. Analiz Ikh Prilozh. Resp. Nauch. Sb.,10, 132–143 (1970).Google Scholar
  41. 41.
    Per Enflo, “Counterexamples in the approximation problem in Banach spaces,” Mat. Period Sb. Per. In. Statei,18, No. 1, 146–155 (1974).Google Scholar
  42. 42.
    Zvi Altshuler, P. G. Casassa, and Lin Bor-Luh, “On symmetric basic sequences in Lorentz sequence spaces,” Isr. J. Math.,15, No. 2, 140–155 (1973).Google Scholar
  43. 43.
    Dean R. Brown, “B-convexity and reflexivity in Banach spaces,” Trans. Am. Math. Soc.,187, No. 1, 69–76 (1974).Google Scholar
  44. 44.
    Dean R. Brown, “P-convexity and B-convexity in Banach spaces,” Trans. Am. Math. Soc.,187, No. 1, 77–81 (1974).Google Scholar
  45. 45.
    Antoine Brunel and Lois Sucheston, “Sur quelques conditions equivalents a la superre-flexicité dans les espaces de Banach,” C. R. Acad. Sci.,275, No. 20, A993-A994 (1972).Google Scholar
  46. 46.
    J. R. Calder and J. B. Hill, “A collection of sequence spaces,” Trans. Am. Math. Soc.,152, No. 1, 107–118 (1970).Google Scholar
  47. 47.
    P. Casassa, “On a geometric condition related to boundedly complete bases and normal structure in Banach spaces,” Proc. Am. Math. Soc.,36, No. 2, 443–447 (1972).Google Scholar
  48. 48.
    Z. Ciesielski, “A construction of basis in C1(I2),” Stud. Math.,33, No. 2, 243–247 (1969).Google Scholar
  49. 49.
    Z. Ciesielski and J. Domsta, “Construction of an orthonormal basis in Cm(Id) and Wpm(Id),” Stud. Math.,41, No. 2, 211–224 (1972).Google Scholar
  50. 50.
    Didier Dacuncha-Castelle and Michel Schreiber, “Sous-espaces symmetriques des espaces d'Orlicz,” C. R. Acad. Sci.,276, No. 8, A629-A631 (1973).Google Scholar
  51. 51.
    A. M. Davie, “The approximation problem for Banach spaces,” Bull. London Math. Soc.,5, No. 3, 261–266 (1973).Google Scholar
  52. 52.
    William J. Davis, “Basis preserving maps,” Proc. Am. Math. Soc.,22, No. 1, 34–36 (1969).Google Scholar
  53. 53.
    William J. Davis, “Remarks on finite rank projections,” J. Approxim. Theory,9, No. 3, 205–211 (1973).Google Scholar
  54. 54.
    David W. Dean, Lin Bor-Luh, and J. Singer, “On k-shrinking and k-boundedly complete basis in Banach spaces,” Pacific J. Math.,32, No. 2, 323–331 (1970).Google Scholar
  55. 55.
    Jean-Pierre Deschaseaux, “Une caraćterisation de certain espaces vectorieles normés de dimension finie par leur constante de Macphail,” C. R. Acad. Sci.,276, No. 20, A1349-A1351 (1973).Google Scholar
  56. 56.
    L. E. Dor, “A note on monotone bases,” Isr. J. Math.,14, No. 3, 285–286 (1973).Google Scholar
  57. 57.
    Per Enflo, “Banach spaces which can be given an equivalent uniformly convex norm,” Isr. J. Math.,13, No. 3–4, 281–288 (1972).Google Scholar
  58. 58.
    Per Enflo, “A counterexample to the approximation problem in Banach spaces,” Acta Math.,130, No. 3–4, 309–317 (1973).Google Scholar
  59. 59.
    Per Enflo, “A Banach space with basic constant >1,” Ark. Mat., No. 1, 103–107 (1973).Google Scholar
  60. 60.
    T. Figiel, “Some remarks on Dvoretzky's theorem on almost spherical sections of convex bodies,” Colloq. Math.,24, No. 2, 241–252 (1972).Google Scholar
  61. 61.
    T. Figiel, “Factorization of compact operators and application to the approximation problem,” Stud. Math. (PRL),45, No. 2, 191–210 (1973).Google Scholar
  62. 62.
    T. Figiel and W. B. Johnson, “The approximation property does not imply the bounded approximation property,” Proc. Am. Math. Soc.,41, No. 1, 197–200 (1973).Google Scholar
  63. 63.
    Svatopluk Fučik, John Oldrich, and Nečas Jindrich, “On the existence of Schauder basis in Sobolev spaces,” Comment. Math. Univ. Carol.,13, No. 1, 163–175 (1972).Google Scholar
  64. 64.
    Svatopluk Fučik and Alois Kufner, “O Shaderovych basich a jejich aplikacich,” Pokr. Math. Fiz. a Astronom.,19, No. 1, 11–18 (1974).Google Scholar
  65. 65.
    J. L. B. Gamlen and R. J. Gaudet, “On subsequences of the Haar system inl p(1<p<∞),” Isr. J. Math.,15, No. 4, 404–413 (1973).Google Scholar
  66. 66.
    D. J. H. Garling and Y. Gordon, “Relations between some constants associated with finite-dimensional Banach spaces,” Isr. J. Math.,9, No. 3, 346–361 (1971).Google Scholar
  67. 67.
    Daniel P. Giesy, “On a convexity condition in normed linear spaces,” Trans. Am. Math. Soc.,125, No. 1, 114–146 (1966).Google Scholar
  68. 68.
    Daniel P. Giesy, “Additions and corrections to On a convexity condition...;,” Trans. Am. Math. Soc.,140, No. 3, 511–512 (1969).Google Scholar
  69. 69.
    Daniel P. Giesy, “The completion of a B-convex normed Riesz space is reflexive,” J. Funct. Anal.,12, No. 2, 188–198 (1973).Google Scholar
  70. 70.
    Daniel P. Giesy, “B-convexity and reflexivity,” Isr. J. Math.,15, No. 4, 430–436 (1973).Google Scholar
  71. 71.
    Daniel P. Giesy and R. C. James, “Uniformly nonZ 1 and B-convex Banach spaces,” Stud. Math. (PRL),48, No. 1, 61–69 (1973). 'Google Scholar
  72. 72.
    Y. Gordon, “On the projection and Macphail constants inl(pn) -spaces,” Isr. J. Math.,6, No. 3, 295–302 (1968).Google Scholar
  73. 73.
    Y. Gordon, “On p-absolutely summing constants of Banach spaces,” Isr. J. Math.,7, No. 2, 151–163 (1969).Google Scholar
  74. 74.
    Y. Gordon, “On the distance coefficient isomorphic function spaces,” Isr. J. Math.,8, No. 4, 391–397 (1970).Google Scholar
  75. 75.
    Y. Gordon, “Asymmetry and projection constants in Banach spaces,” Isr. J. Math.,14, No. 1, 50–62 (1973).Google Scholar
  76. 76.
    Y. Gordon, D. R. Lewis, and J. R. Retherford, “Banach ideals of operators with applications to the finite dimensional structure of Banach spaces,” Isr. J. Math.,13, No. 3–4, 348–360 (1972).Google Scholar
  77. 77.
    Y. Gordon, D. R. Lewis, and J. R. Retherford, “Banach ideals of operators with applications,” J. Funct. Anal.,14, No. 1, 85–129 (1973).Google Scholar
  78. 78.
    Y. Gordon and H. S. Witsenhausen, “On extensions of the Gale-Berlekamp switching problem and constants of Zp-spaces,” Isr. J. Math.,11, No. 2, 216–229 (1972).Google Scholar
  79. 79.
    R. P. Gosselin and Y. H. Neuwirth, “On Paley-Wiener bases,” J. Math. and Mech.,18, No. 9, 871–879 (1969).Google Scholar
  80. 80.
    R. E. Harrel and L. A. Karlivitz, “Girth and flat Banach spaces,” Bull. Am. Math. Soc.,76, No. 6, 1288–1291 (1970).Google Scholar
  81. 81.
    Julen Hennefeld, “On nonequivalent normalized unconditional bases for Banach spaces,” Proc. Am. Math. Soc.,41, No. 1, 156–158 (1973).Google Scholar
  82. 82.
    J. R. Holub, “Some problems concerning basis in Banach spaces,” Proc. Am. Math. Soc.,23, No. 3, 521–525 (1969).Google Scholar
  83. 83.
    J. R. Holub, “Bases of type P and reflexivity of Banach spaces,” Proc. Am. Math. Soc.,25, No. 2, 357–362 (1970).Google Scholar
  84. 84.
    J. R. Holub, “Universal bases in Banach spaces,” Rev. Roum. Math. Pures et Appl.,16, No. 8, 1193–1199 (1971).Google Scholar
  85. 85.
    J. R. Holub, “Hilbertian, Besselian, and semishrinking bases,” Stud. Math. (PRL),37, No. 3, 203–211 (1971).Google Scholar
  86. 86.
    J. R. Holub and J. R. Retherford, “Some curious bases for co and C[0, 1],” Stud. Math. (RPL),34, No. 3, 227–240 (1970).Google Scholar
  87. 87.
    J. R. Holub and J. R. Retherford, “The stability of basis in Banach and Hilbert spaces,” J. Reine und Angew. Math.,246, 136–146 (1971).Google Scholar
  88. 88.
    J. R. Holub and J. R. Retherfod, “A note on unconditional bases,” Can. Math. Bull.,15, No. 3, 369–372 (1972).Google Scholar
  89. 89.
    Robert C. James, “Some self-dual properties of normed linear spaces,” Ann. Math. Stud., No. 69, 159–175 (1972).Google Scholar
  90. 90.
    Robert C. James, “Superreflexive Banach spaces,” Can. J. Math.,24, No. 5, 896–904 (1972).Google Scholar
  91. 91.
    Robert C. James, “Superreflexive spaces with bases,” Pacific J. Math.,41, No. 2, 409–419 (1972).Google Scholar
  92. 92.
    Robert C. James and Juan Jorge Schäffer, “Superreflexivity and the girth of the spheres,” Isr. J. Math.,11, No. 4, 388–404 (1972).Google Scholar
  93. 93.
    William B. Johnson, “A complementary universal conjugate Banach space and its relations to the approximation problem,” Isr. J. Math.,13, No. 3–4, 301–310 (1972).Google Scholar
  94. 94.
    William B. Johnson and H. P. Rosenthal, “On W*-basic sequences and their applications on the study of Banach spaces,” Stud. Math. (PRL),43, 77–92 (1972).Google Scholar
  95. 95.
    William B. Johnson and M. Zippin, “On bases, finite-dimensional decomposition, and weaker structures in Banach spaces,” Isr. J. Math.,9, No. 4, 488–506 (1971).Google Scholar
  96. 96.
    M. I. Kadec, “On complementably universal Banach spaces,” Stud. Math. (PRL),40, No. 1, 85–89 (1971).Google Scholar
  97. 97.
    N. J. Kalton, “Bases in weakly sequentially complete Banach spaces,” Stud. Math. (PRL),42, No. 2, 121–131 (1972).Google Scholar
  98. 98.
    Robert J. Knowles and Thurlow A. Cook, “Some results on Auerbach bases for finite-dimensional normed spaces,” Bull. Soc. Roy. Sci. Liege,42, No. 11–12, 518–522 (1973).Google Scholar
  99. 99.
    Clifford A. Kottman, “Packing and reflexivity in Banach spaces,” Trans. Am. Math. Soc.,150, No. 2, 565–576 (1970).Google Scholar
  100. 100.
    S. Kwapien and A. Peczyński, “The main triangle projection in matrix spaces and its applications,” Stud. Math. (PRL),34, No. 1, 43–68 (1970).Google Scholar
  101. 101.
    Lin Bor-Luh and J. Singer, “On conditional bases of Z2,” Rocz. Pol. Tow. Mat., Ser. 1,15, 135–139 (1971).Google Scholar
  102. 102.
    J. Lindenstrauss, “Some aspects of the theory of Banach spaces,” Advances Math.,5, No. 2, 159–180 (1970).Google Scholar
  103. 103.
    J. Lindenstrauss, “A remark on symmetric bases,” Isr. J. Math.,13, No. 3–4, 317–320 (1972).Google Scholar
  104. 104.
    J. Lindenstrauss and A. Pelczyński, “Absolutely summing operators in Lp-spaces and their applications,” Stud. Math.,29, No. 3, 275–326 (1968).Google Scholar
  105. 105.
    J. Lindenstrauss and L. Tzafriri, “On Orlicz sequence spaces,” Isr. J. Math.,10 No. 3, 379–390 (1971).Google Scholar
  106. 106.
    J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces. II,” Isr. J. Math.,11, No. 4, 355–379 (1972).Google Scholar
  107. 107.
    J. Lindenstrauss and L. Tzafriri, “On Orlicz sequence spaces. III,” Isr. J. Math.,14, No. 4, 368–389 (1973).Google Scholar
  108. 108.
    J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Lecture Notes Math, Vol. 338 (1973).Google Scholar
  109. 109.
    J. Lindenstrauss and M. Zippin, “Banach spaces with a unique unconditional basis,” J. Funct. Anal.,3, No. 1, 115–125 (1969).Google Scholar
  110. 110.
    Jürg T. Marti, Introduction to the Theory of Bases, Vol. 22, Springer, Berlin-Heidelberg-New York (1969), p. 149.Google Scholar
  111. 111.
    B. Maurey, “Sur une application de la théorie des opérateurs p-sommants,” C. R. Acad. Sci.,274, No. 17, A304-A307 (1972).Google Scholar
  112. 112.
    B. Maurey, “Sur certains proprietes des operateurs sommants,” C. R. Acad. Sci.,277, No. 21, A1053-A1055 (1973).Google Scholar
  113. 113.
    B. Maurey and G. Pisier, “Caractérisation d'une class d'espaces de Banach par des propriétés de séries aleatoires vectorielles,” C. R. Acad. Sci.,277, No. 14, A687-A690 (1973).Google Scholar
  114. 114.
    C. W. McArthur, “Developments in Schauder basis theory,” Bull. Am. Math. Soc.,78, No. 6, 877–908 (1972).Google Scholar
  115. 115.
    Robert A. MacGuigan, Jr., Near Isometry of Banach Spaces and the Banach-Mazur distance, Doct. Diss. Univ. Md., 1968, Dissert. Abstr.,B29, No. 11, 4275–4276 (1969).Google Scholar
  116. 116.
    Robert A. McGuigan, Jr., “Two near-isometry invariants of Banach spaces,” Compos. Math.,22, No. 3, 265–268 (1970).Google Scholar
  117. 117.
    N. T. Nielsen and P. Wojtazczyk, “A remark on bases in Lp-spaces with an application to complementably universal L-spaces,” Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron, et Phys.,21, No. 3, 249–254 (1973).Google Scholar
  118. 118.
    A. Pelczyński, “Universal bases,” Stud. Math.,32, No. 3, 247–268 (1969).Google Scholar
  119. 119.
    A. Pelczyński, “Any separable Banach space with the bounded approximation property is a complemented subspace of a Banach space with a basis,” Stud. Math. (PRL),40, No. 3, 239–243 (1971).Google Scholar
  120. 120.
    A. Pelczyński, “O pewnych problemach Banacha,” Pocz. Pol. Tow. Mat.,15, Ser. 2, 3–11 (1972).Google Scholar
  121. 121.
    A. Pelczynski and J. Singer, “On nonequivalent bases and unconditional bases in Banach spaces,” Stud. Math.,25, No. 1, 5–25 (1964).Google Scholar
  122. 122.
    A. Pelczyński and P. Wojtazczyk, “Banach spaces with finite-dimensional expansion of identity and universal bases of finite-dimensional subspaces,” Stud. Math. (PRL),40, No. 4, 91–108 (1971).Google Scholar
  123. 123.
    G. Pisier, “Type des espaces normes,” C. R. Acad. Sci.,276, No. 26, A1673-A1676 (1973).Google Scholar
  124. 124.
    G. Pisier, “Sur les espaces de Banach qui ne contienent pas uniformement de Z1 (n),” C. R. Acad. Sci.,277, No. 20, A991-A994 (1973).Google Scholar
  125. 125.
    G. Pisier, “Martingales a valeurs dans les espaces uniformément convexes,” C. R. Acad. Sci.,A279, No. 16, 647–649 (1974).Google Scholar
  126. 126.
    J. R. Retherford, “A semishrinking basis which is not shrinking,” Proc. Am. Math. Soc.,19, No. 3, 766–768 (1968).Google Scholar
  127. 127.
    R. Rolland, “Sur l'existence et l'unicite de bases complementairement universelles, pour quelques de bases d'espaces de Banach,” C. R. Acad. Sci.,272, No. 24, A1567-A1569 (1971).Google Scholar
  128. 128.
    Samn Sherwood, “A bounded Hilbertian basis in C[0, 1],” Proc. Am. Math. Soc.,40, No. 2, 465–469 (1973).Google Scholar
  129. 129.
    P. Saphar, “Hipotése d'approximation á l'ordre p dans les espaces de Banach et approximation d'applications p absolument sommantes,” Isr. J. Math.,13, No. 3–4, 379–399 (1972).Google Scholar
  130. 130.
    Juan Jorge Schaffer, “Minimum girth of spheres,” Math. Ann.,184, No. 3, 169–171 (1970).Google Scholar
  131. 131.
    Juan Jorge Schaffer, “Spheres with maximum inner diameter,” Math. Ann.,190, No. 3, 242–247 (1971).Google Scholar
  132. 132.
    Juan Jorge Schaffer, “More distant than the antipodes,” Bull. Am. Math. Soc.,77, No. 4, 606–609 (1971).Google Scholar
  133. 133.
    Juan Jorge Schaffer, “On the geometry of spheres in L-spaces,” Isr. J. Math.,10, No. 1, 114–120 (1971).Google Scholar
  134. 134.
    Juan Jorge Schaffer, “On the geometry of spheres in spaces of continuous functions,” J. Anal. Math.,26, 337–389 (1973).Google Scholar
  135. 135.
    Juan Jorge Schaffer and Kondagupta Sundaresan, “Reflexivity and the girth of spheres,” Math. Ann.,184, No. 3, 163–168 (1970).Google Scholar
  136. 136.
    Z. Semadeni, Banach Spaces of Continuous Functions, Vol. I, Monogr. Mat., Vol. 55 (1971).Google Scholar
  137. 137.
    J. E. Shirey and R. E. Zink, “On unconditional bases in certain Banach function spaces,” Stud. Math. (PRL),36, No. 2, 169–175 (1970).Google Scholar
  138. 138.
    J. Singer, Bases in Banach Spaces. I, Springer, Heidelberg-New York (1970).Google Scholar
  139. 139.
    L. Sternbach, “On k-shrinking and k-boundedly complete basis sequences and quasi-reflexive spaces,” Pacif. J. Math.,37, No. 3, 817–823 (1971).Google Scholar
  140. 140.
    A. Szankowski, “An example of a universal Banach space,” Isr. J. Math.,11, No. 3, 292–296 (1972).Google Scholar
  141. 141.
    A. Szankowski, “Embedding Banach spaces with unconditional bases into spaces with symmetric bases,” Isr. J. Math.,15, No. 1, 53–59 (1973).Google Scholar
  142. 142.
    H. E. Warren, “A special basis for C[0, 1],” Proc. Am. Math. Soc.,27, No. 3, 495–499 (1971).Google Scholar
  143. 143.
    P. Wojtaszczyk, “Approximation properties and universal Banach spaces,” Bull. Soc. Math. France, Mem. No. 31–32, 395–398 (1972).Google Scholar
  144. 144.
    P. Wojtaszczyk, “Esistence of some special bases in Banach spaces,” Stud. Math. (PRL),47, No. 1, 83–93 (1973).Google Scholar
  145. 145.
    P. Wojtaszczyk, “On complemented subspaces and unconditional bases inl p+l p,” Stud. Math. (PRL),47, No. 3, 197–206 (1973).Google Scholar
  146. 146.
    M. Zippin, “Existence of universal members in certain families of bases of Banach spaces,” Proc. Am. Math. Soc.,26, No. 2, 294–300 (1970).Google Scholar

Copyright information

© Plenum Publishing Corporation 1977

Authors and Affiliations

  • M. I. Kadets

There are no affiliations available

Personalised recommendations