Skip to main content
Log in

Trapping and cascading of eigenvalues in the large coupling limit

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider eigenvaluesE λ of the HamiltonianH λ=−Δ+VW,W compactly supported, in the λ→∞ limit. ForW≧0 we find monotonic convergence ofE λ to the eigenvalues of a limiting operatorH (associated with an exterior Dirichlet problem), and we estimate the rate of convergence for 1-dimensional systems. In 1-dimensional systems withW≦0, or withW changing sign, we do not find convergence. Instead, we find a cascade phenomenon, in which, as λ→∞, each eigenvalueE λ stays near a Dirichlet eigenvalue for a long interval (of lengthO(\(\sqrt \lambda \))) of the scaling range, quickly drops to the next lower Dirichlet eigenvalue, stays there for a long interval, drops again, and so on. As a result, for most large values of λ the discrete spectrum ofH λ is close to that ofE , but when λ reaches a transition region, the entire spectrum quickly shifts down by one. We also explore the behavior of several explicit models, as λ→∞.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I. A.: Handbook of mathematical functions. New York: Dover 1972

    Google Scholar 

  2. Alama, S., Deift, P., Hempel, R.: Eigenvalue problems arising in the theory of the color of crystals (to appear)

  3. Albeverio, S., Gesztesy, F., Høegh-Krohn, R., Holden, H.: Solvable models in quantum mechanics. Texts and Monographs in Physics. Berlin, Heidelberg, New York: Springer 1988

    Google Scholar 

  4. Ashbaugh, M. S., Harrell, E. M.: Perturbation theory for shape resonances and large barrier potentials. Commun. Math. Phys.83, 151–170 (1982)

    Google Scholar 

  5. Baumgärtel, H., Demuth, M.: Decoupling by a projection, Rep. Math. Phys.15, 173–186 (1979)

    Google Scholar 

  6. Bulla, W., Gesztesy, F.: Deficiency indices and singular boundary conditions in quantum mechanics. J. Math. Phys.26, 2520–2528 (1985)

    Google Scholar 

  7. Deift, P. A.: Applications of a communication formula, Duke Math. J.45, 267–310 (1978)

    Google Scholar 

  8. Deift, P. A., Hempel, R.: On the existence of eigenvalues of the Schrödinger operatorHλW in a gap ofσ(H). Commun. Math. Phys.103, 461–490 (1986)

    Google Scholar 

  9. Dunford, N., Schwartz, J. T.: Linear Operators II. New York: Interscience 1963

    Google Scholar 

  10. Gesztesy, F., Simon, B.: On a theorem of Deift and Hempel. Commun. Math. Phys.116, 503–505 (1988)

    Google Scholar 

  11. Grinberg, A. A.: Energy spectrum of an electron placed in the fields of a small-radius potential well and an attractive coulomb potential. Sov. Phys. Semicond.11, 1118–1120 (1977)

    Google Scholar 

  12. Harrell, E. M.: The band structure of a one-dimensional periodic system in a scaling limit. Ann. Phys.119, 351–369 (1979)

    Google Scholar 

  13. Hempel, R.: A left-indefinite generalized eigenvalue problem for Schrödinger operators. Habilitationsschrift, University of Munich, FRG, 1987

    Google Scholar 

  14. Hempel, R., Hinz, A. M., Kalf, H.: On the essential spectrum of Schrödinger operators with spherically symmetric potentials. Math. Ann.277, 197–208 (1987)

    Google Scholar 

  15. Hille, E., Phillips, R. S.: Functional analysis and semigroups. Rev. ed., Providence, RI: Am. Math. Soc. Colloq. Publ.31, (1957)

    Google Scholar 

  16. Kato, T.: On the Trotter-Lie product formula. Proc. Jpn. Acad.50, 694–698 (1974)

    Google Scholar 

  17. Kato, T.: Trotter's product formula for an arbitrary pair of self-adjoint contraction semi-groups. In: Topics in functional analysis. Adv. Math. Suppl. Stud.3, 185–195 (1978)

    Google Scholar 

  18. Kato, T.: Monotonicity theorems in scattering theory. Hadronic J.1, 134–154 (1978)

    Google Scholar 

  19. Kato, T.: Perturbation theory for linear operators. 2nd corr. (ed.), Berlin, Heidelberg, New York: Springer 1980

    Google Scholar 

  20. Klaus, M.: Some applications of the Birman-Schwinger principle. Helv. Phys. Acta55, 49–68 (1982)

    Google Scholar 

  21. Kudryavtsev, A. E., Markushin, V. E., Shapiro, I. S.: Nuclear level shift in the (p21-1) Atom. Sov. Phys. JETP47, 225–232 (1978)

    Google Scholar 

  22. Olver, F. W. J.: Asymptotics and special functions. New York: Academic Press 1974

    Google Scholar 

  23. Pötz, W., Vogl, P.: High magnetic field effects on shallow and deep impurities in semiconductors. Solid State Comm.48, 249–252 (1983)

    Google Scholar 

  24. Popov, V. S.: On the properties of the discrete spectrum for Z close to 137. Sov. Phys. JETP33, 665–673 (1971)

    Google Scholar 

  25. Reed, M., Simon, B.: Methods of modern mathematical physics I: Functional analysis, rev. and enlarged ed., New York: Academic Press 1980

    Google Scholar 

  26. Reed, M., Simon, B.: Methods of modern mathematical physics IV: Analysis of operators. New York: Academic Press 1978

    Google Scholar 

  27. Saxon, D. S., Hutner, R. A.: Some electronic properties of a one-dimensional crystal model. Phillips Res. Rep.4, 81–122 (1949)

    Google Scholar 

  28. Simon, B.: Coupling constant analyticity for the anharmonic oscillator. Ann. Phys.58, 76–136 (1970)

    Google Scholar 

  29. Simon, B.: Lower semicontinuity of positive quadratic forms. Proc. Roy. Soc. Edinburgh79, 267–273 (1977)

    Google Scholar 

  30. Simon, B.: A canonical decomposition for quadratic forms with applications to monotone convergence theorems. J. Funct. Anal.28, 377–385 (1978)

    Google Scholar 

  31. Thirring, W.: A course in mathematical physics Vol. 3: Quantum mechanics of atoms and molecules. Berlin, Heidelberg, New York: Springer 1981

    Google Scholar 

  32. Veselić, K.: Perturbation of pseudoresolvents and analyticity in 1/c in relativistic quantum mechanics. Commun. Math. Phys.22, 27–43 (1971)

    Google Scholar 

  33. Vogl, P.: Chemical trends of deep impurity levels in covalent semiconductors. In: Festkörperprobleme XXI (1981), pp. 191–219. Wiesbaden, Vieweg

    Google Scholar 

  34. Weidmann, J.: Oszillationsmethoden für systeme Gewöhnlicher Differentialgleichungen. Math. Z.119, 349–373 (1971)

    Google Scholar 

  35. Weidmann, J.: Linear operators in Hilbert spaces. Graduate texts in mathematics Vol.68, Berlin, Heidelberg, New York: Springer 1980

    Google Scholar 

  36. Zel'dovich, Ya.B.: Energy levels in a distorted Coulomb field. Sov. Phys. Solid State1, 1497–1501 (1960)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Jaffe

Max Kade Foundation Fellow

Partially supported by USNSF under Grant DMS-8416049

On leave of absence from Department of Mathematics and Statistics, Case Western Reserve University, Cleveland, OH 44106, USA. Partially supported by USNSF under Grant DMS-8620231 and the Case Institute of Technology, RIG

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gesztesy, F., Gurarie, D., Holden, H. et al. Trapping and cascading of eigenvalues in the large coupling limit. Commun.Math. Phys. 118, 597–634 (1988). https://doi.org/10.1007/BF01221111

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01221111

Keywords

Navigation