Skip to main content
Log in

Quantitative separation of traces of copper by electrodeposition and determination by electron probe microanalysis

  • Published:
Microchimica Acta Aims and scope Submit manuscript

Summary

A combination of ion-exchange and micro-electrodeposition techniques permits the rapid separation of sub-microgram amounts of copper in a form suitable for determination with the electron probe microanalyser. Recoveries of 98% and standard deviations < 5% have been checked by other methods at the 10-μg level.

Zusammenfassung

Eine Verbindung von Ionenaustausch und Elektrolyse ermöglicht die rasche Abscheidung von Submikrogrammengen Kupfer in einer für die Elektronenstrahlmikroanalyse geeigneten Form. Ausbeuten von 98% und Standardabweichungen von < 5% wurden mit anderen Verfahren im 10-μg-Maßstab erwiesen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  1. H. A. Liebhafsky andP. D. Zemany, Analyt. Chemistry28, 455 (1956).

    Google Scholar 

  2. C. L. Luke, Analyt. Chemistry35, 56 (1963).

    Google Scholar 

  3. W. J. Campbell, E. F. Spano, andT. E. Green, Analyt. Chemistry38, 987 (1966).

    Google Scholar 

  4. L. B. Rogers, Analyt. Chemistry22, 1386 (1950).

    Google Scholar 

  5. J. Inezédy, Analytical Applications of Ion Exchangers. Budapest: Akadémiai Kiadó. 1966.

    Google Scholar 

  6. H. A. Cranston andJ. B. Thompson, Ind. Eng. Chem., Analyt. Ed.18, 323 (1946).

    Google Scholar 

  7. H. Buchwald andL. G. Wood, Analyt. Chemistry25, 664 (1953).

    Google Scholar 

  8. E. C. Potter andJ. F. Moresby, Symposium on Ion Exchange and Chromatography in Analytical Chemistry. ASTM No. 195 (1958). See also Ref. 5.

  9. E. F. Spano andT. E. Green, Analyt. Chemistry38, 1341 (1966).

    Google Scholar 

  10. J. A. Scherrer, R. K. Bell, andW. D. Mogerman, J. Res. Nat. Bur. Std.22, 697 (1939).

    Google Scholar 

  11. J. T. Murphy andJ. K. Taylor, Analyt. Chemistry37, 929 (1965).

    Google Scholar 

  12. F. Pregl andH. Roth, Quantitative organische Mikroanalyse. 5th Ed. Wien: Springer-Verlag. 1947. p. 180.

    Google Scholar 

  13. A. Benedetti-Pichler, Z. analyt. Chem.62, 321 (1923).

    Google Scholar 

  14. H. J. Brenneis, Mikrochem.9, 385 (1931).

    Google Scholar 

  15. H. Alber, Mikrochem.14, 227 (1933).

    Google Scholar 

  16. E. Wiesenberger, Mikrochim. Acta [Wien]1960, 946.

  17. B. J. Hynek andL. J. Wrangell, Analyt. Chemistry28, 1520 (1956).

    Google Scholar 

  18. L. Meites, Analyt. Chemistry27, 416 (1955).

    Google Scholar 

  19. L. Silverman, Ind. Eng. Chem., Analyt. Ed.17, 270 (1945).

    Google Scholar 

  20. E. B. Sandell, Colorimetric Determination of Traces of Metals, 3rd Ed. New York: Interscience. 1959.

    Google Scholar 

  21. R. Bock andE. Zimmer, Naturwiss.52, 429 (1965).

    Google Scholar 

  22. G. Weichbrodt, Dissertation, Mainz, 1970.

  23. S. S. Lord, R. C. O'Neil, andL. B. Rogers, Analyt. Chemistry24, 209 (1952).

    Google Scholar 

  24. C. Zbinden, Bull. soc. chim. biol.13, 35 (1931).

    Google Scholar 

  25. W. Kemula, Pure Appl. Chem.15, 283 (1967).

    Google Scholar 

  26. J. B. Dawson, at the SAC Meeting on Trace Analysis, St. Andrews, Scotland, 1970.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malissa, H., Marr, I.L. Quantitative separation of traces of copper by electrodeposition and determination by electron probe microanalysis. Mikrochim Acta 59, 241–249 (1971). https://doi.org/10.1007/BF01219620

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01219620

Keywords

Navigation