Diabetologia

, Volume 14, Issue 4, pp 213–222 | Cite as

Physical exercise and fuel homeostasis in diabetes mellitus

  • J. Wahren
  • P. Felig
  • L. Hagenfeldt
Review Articles

Summary

During the initial phase of physical exercise muscle glycogen is the primary source of fuel for contracting muscle in normal man. When exercise continues beyond the first 5–10 min blood glucose and free fatty acids (FFA) become increasingly important substrates. Glucose utilization may account for 25–35% of the total substrate supply during mild to moderately heavy exercise. The augmented glucose utilization by working muscle is balanced by a rise in hepatic glucose production. The latter is achieved primarily by hepatic glycogenolysis during brief work, but during prolonged exercise gluconeogenesis may account for as much as 40–50% of the hepatic glucose output. Muscle uptake of FFA is determined primarily by its availability to the working muscle, and it may account for 30–60% of the total fuel supply. Ketone bodies are not utilized by working muscle in normal man. In patients with diabetes mellitus the metabolic effects of physical exercise are to a large extent determined by the time interval between insulin administration and the onset of exercise. Thus, in insulin treated patients with mild hyperglycaemia and no or minimal ketonaemia the utilization of glycogen, blood glucose and FFA by working muscle is similar to that of healthy subjects, and exercise is accompanied by a fall in blood glucose levels. In contrast, patients with more marked hyperglycaemia and hyperketonaemia may respond to exercise with a further rise in both blood glucose and ketone body levels, reflecting augmented rates of hepatic gluconeogenesis as well as ketogenesis. The repletion of muscle and liver glycogen, which takes place for 24–48 h after exercise, requires — besides carbohydrate feeding — a minimum concentration of insulin. Glycogen resynthesis probably accounts for a major part of the empirically well established beneficial effect of physical exercise in diabetic patients. The above considerations underscore the importance of adequate insulin administration in connection with exercise in diabetic patients.

Key words

Body substrate depots fuel homeostasis physical exercise diabetes mellitus glucoregulatory hormones muscle glycogen liver glycogen gluconeogenesis glycogenolysis ketogenesis blood glucose FFA ketone bodies amino acids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tulloch, J.A.: Diabetes mellitus in the tropics, p. 2. London: Livingstone 1962Google Scholar
  2. 2.
    von Noorden, C.: Die Zuckerkrankheit und ihre Behandlung, p. 498. Berlin: Hirschwald 1917Google Scholar
  3. 3.
    Brasch, W.: Beobachtungen aus fiebernden Diabetiker. Dtsch. Arch. Klin. Med.97, 508–528 (1909)Google Scholar
  4. 4.
    Frerichs, F.T.: Über den Diabetes, p. 260–290. Berlin: Hirschwald 1884Google Scholar
  5. 5.
    Lawrence, R.D.: The effect of exercise on insulin action in diabetes. Br. Med. J.1926 I, 648–650Google Scholar
  6. 6.
    Hetzel, K.L., Long, C.N. H.: The metabolism of the diabetic individual during and after muscular exercise. Proc. R. Soc. Lond. [Biol.]99, 279–306 (1926)Google Scholar
  7. 7.
    Bürger, M., Kramer, H.: Über die durch Muskelarbeit hervorgerufene Steigerung der Insulinwirkung auf den Blutzuckergehalt beim Normalen und Gestörten Kohlehydratstoffwechsel und ihre praktische und theoretische Bedeutung. Klin. Wochenschr.7, 745–750 (1928)Google Scholar
  8. 8.
    Barringer, T.B., Jr.: The effect of exercise upon the carbohydrate tolerance in diabetes. Am. J. Med. Sci.151, 181–184 (1916)Google Scholar
  9. 9.
    Mering, A. von, Minkowski, O.: Diabetes mellitus nach Pankreasexstirpation. Naunyn-Schmiedebergs Arch. Pharmacol.26, 371–387 (1890)Google Scholar
  10. 10.
    Hildes, J.A., Sherlock, S., Walshe, V.: Liver and muscle glycogen in normal subjects, in diabetes mellitus and acute hepatitis. I. Under basal conditions. Clin. Sci.7, 287–295 (1949)Google Scholar
  11. 11.
    Roch-Norlund, A.E., Bergström, J., Castenfors, H., Hultman, E.: Muscle glycogen in patients with diabetes mellitus. Glycogen content before treatment and the effect of insulin. Acta Med. Scand.187, 445–453 (1970)Google Scholar
  12. 12.
    Roch-Norlund, A.E.: Muscle glycogen synthetase in patients with diabetes mellitus. Basal values, effect of glycogen depletion by exercise, and effect of treatment. Scand. J. Clin. Lab. Invest.29, 237–242 (1972)Google Scholar
  13. 13.
    Hultman, E.: Studies on muscle metabolism of glycogen and active phosphate in man with special reference to exercise and diet. Scand. J. Clin. Lab. Invest.19 (Suppl. 94), 1–63 (1967)Google Scholar
  14. 14.
    Saltin, B., Karlsson, J.: Muscle glycogen utilization during work of different intensities. In: B. Pernow, B. Saltin. (Ed.): Muscle Metabolism during Exercise, p. 289–299. New York: Plenum Press 1971Google Scholar
  15. 15.
    Hermansen, L., Hultman, E., Saltin, B.: Muscle glycogen during prolonged severe exercise. Acta Physiol. Scand.71, 129–139 (1967)Google Scholar
  16. 16.
    Ahlborg, B., Bergström, J., Ekelund, L.-G., Guarnieri, G., Harris, R.C., Hultman, E., Nordesjö, L.-O.: Muscle metabolism during isometric exercise performed at constant force. J. Appl. Physiol.33, 224–228 (1972)Google Scholar
  17. 17.
    Maehlum, S., Høstmark, A.T., Hermansen, L.: Synthesis of muscle glycogen during recovery after prolonged severe exercise in diabetic and non-diabetic subjects. Scand. J. Clin. Lab. Invest.37, 309–316 (1977)Google Scholar
  18. 18.
    Maehlum, S., Høstmark, A.T., Hermansen, L.: Synthesis of muscle glycogen during recovery after prolonged severe exercise in diabetic subjects. Effect of insulin deprivation. Scand. J. Clin. Lab. Invest.38 (in press) (1978)Google Scholar
  19. 19.
    Chauveau, M.A., Kaufmann, M.: Expériences pour la détermination du coefficient de l'activité nutritive et respiratoire des muscles en repos et en travail. C. R. Acad. Sci. [D] (Paris)104, 1126–1132 (1887)Google Scholar
  20. 20.
    Jorfeldt, L., Wahren, J.: Human forearm muscle metabolism during exercise. V. Quantitative aspects of glucose uptake and lactate production during prolonged exercise. Scand. J. Clin. Lab. Invest.26, 73–81 (1970)Google Scholar
  21. 21.
    Wahren, J., Felig, P., Ahlborg, G., Jorfeldt, L.: Glucose metabolism during leg exercise in man. J. Clin. Invest.50, 2715–2725 (1971)Google Scholar
  22. 22.
    Andres, R., Cader, G., Zierler, K.L.: The quantitatively minor role of carbohydrate in oxidative metabolism by skeletal muscle in intact man in the basal state. Measurements of oxygen and glucose uptake and carbon dioxide and lactate production in the forearm. J. Clin. Invest.35, 671–682 (1956)Google Scholar
  23. 23.
    Ahlborg, G., Felig, P., Hagenfeldt, L., Hendler, R., Wahren, J.: Substrate turnover during prolonged exercise in man: Splanchnic and leg metabolism of glucose, free fatty acids and amino acids. J. Clin. Invest.53, 1080–1090 (1974)Google Scholar
  24. 24.
    Pirnay, F., Lacroix, M., Mosora, F., Luyckx, A., Lefebvre, P.: Glucose oxidation during prolonged exercise evaluated with naturally labeled (13C) glucose. J. Appl. Physiol.43, 258–261 (1977)Google Scholar
  25. 25.
    Sanders, C.A., Levinson, G.E., Abelmann, W.H., Freinkel, N.: Effect of exercise on the peripheral utilization of glucose in man. N. Engl. J. Med.271, 220–225 (1964)Google Scholar
  26. 26.
    Wahren, J., Hagenfeldt, L., Felig, P.: Splanchnic and leg exchange of glucose amino acids, and free fatty acids during exercise in diabetes mellitus. J. Clin. Invest.55, 1303–1314 (1975)Google Scholar
  27. 27.
    Lyngsøe, J., Clausen, J. P., Trap-Jensen, J., Sestoft, L., Schaffalatizky de Muckadell, O., Holst, J. J., Nielsen, S. L., Rehfeld, J. F.: Exchange of metabolites in the leg of exercising juvenile diabetics. Clin. Sci. Mol. Med.54 (in press) (1978)Google Scholar
  28. 28.
    Vranic, M., Kawamori, R., Wrenshall, G.A.: Mechanism of exercise-induced hypoglycemia in depancreatized insulintreated dogs. Diabetes23 (Suppl. 1), 353 (1974)Google Scholar
  29. 29.
    Böttger, I., Schlein, E.M., Faloona, G.R., Knochel, J.P., Unger, R.H.: The effect of exercise on glucagon secretion. J. Clin. Endocrinol. Metab.35, 117–125 (1972)Google Scholar
  30. 30.
    Franckson, J.R. M., Vanroux, R., Leclercq, R., Brunengraber, H., Ooms, H.A.: Labelled insulin catabolism and pancreatic responsiveness during long-term exercise in man. Horm. Metab. Res.3, 366–373 (1971)Google Scholar
  31. 31.
    Berger, M., Hagg, S., Ruderman, N.B.: Glucose metabolism in perfused skeletal muscle. Interaction of insulin and exercise on glucose uptake. Biochem. J.146, 231–238 (1975)Google Scholar
  32. 32.
    Levin, S.A., Gordon, B., Derick, C.L.: Some changes in the chemical constituents of the blood following a marathon race. J.A.M.A.82, 1778–1779 (1924)Google Scholar
  33. 33.
    Nilsson, L. Hison, Fürst, P., Hultman, E.: Carbohydrate metabolism of the liver in normal man under varying dietary conditions. Scand. J. Clin. Lab. Invest.32, 331–337 (1973)Google Scholar
  34. 34.
    Owen, O.E., Felig, P., Morgan, A.P., Wahren, J., Cahill, F., Jr.: Liver and kidney metabolism during prolonged starvation. J. Clin. Invest.48, 574–583 (1969)Google Scholar
  35. 35.
    Felig, P., Wahren, J.: Influence of endogenous insulin secretion on splanchnic glucose and amino acid metabolism in man. J. Clin. Invest.50, 1702–1711 (1971)Google Scholar
  36. 36.
    Marble, A., Smith, R.M.: Exercise in diabetes mellitus. Arch. Intern. Med.58, 577–588 (1936)Google Scholar
  37. 37.
    Errebo-Knudsen, E.O.: Diabetes mellitus and exercise. A physiopathologic study of muscular work in patients with diabetes mellitus, p. 78. Copenhagen: G.E.C. Gad 1948Google Scholar
  38. 38.
    Berger, M., Berchtold, P., Cüppers, H.J., Drost, H., Kley, H.K., Müller, W.A., Wiegelmann, W., Zimmermann-Telschow, H., Gries, F.A., Krüskemper, H.L., Zimmermann, H.: Metabolic and hormonal effects of muscular exercise in juvenile type diabetics. Diabetologia13, 355–365 (1977)Google Scholar
  39. 39.
    Sestoft, L., Trap-Jensen, J., Lyngsøe, J., Clausen, J.P., Holst, J.J., Nielsen, S.L., Rehfeld, J.F., Schaffalitzky de Muckadell, O.: Regulation of gluconeogenesis and ketogenesis during rest and exercise in diabetic subjects and normal man. Clin. Sci. Mol. Med.53, 411–418 (1977)Google Scholar
  40. 40.
    Wahren, J., Felig, P., Cerasi, E., Luft, R.: Splanchnic and peripheral glucose and amino acid metabolism in diabetes mellitus. J. Clin. Invest.51, 1870–1878 (1972)Google Scholar
  41. 41.
    Bondy, P.K., Bloom, W.L., Whitner, V.S., Farrar, B.W.: Studies of the role of the liver in human carbohydrate metabolism by the venous catheter technic. II. Patients with diabetic ketosis, before and after the administration of insulin.J. Clin. Invest.28, 1126–1133 (1949)Google Scholar
  42. 42.
    Hansen, Aa. P.: Normalization of growth hormone hyper-response to exercise in juvenile diabetics after normalization of blood sugar. J. Clin. Invest.50, 1806–1811 (1971)Google Scholar
  43. 43.
    Hartley, L.H., Mason, J.W., Hogan, R.P.: Multiple hormonal responses to graded exercise in relation to physical training. J. Appl. Physiol.33, 602–606 (1972)Google Scholar
  44. 44.
    Edwards, A.V.: The sensitivity of the hepatic glycogenolytic mechanism to stimulation of the splanchnic nerves. J. Physiol.220, 315–334 (1972)Google Scholar
  45. 45.
    Björkman, O., Felig, P., Wahren, J.: Importance of glucagon for the splanchnic glucose production during exercise. Svenska Läkarsällskapets Handlingar86, 227 (1977)Google Scholar
  46. 46.
    Christensen, E.H., Hansen, O.: Untersuchungen über die Verbrennungsvorgänge bei langdauernder, schwerer Muskelarbeit. Skand. Arch. Physiol.81, 152–159 (1939)Google Scholar
  47. 47.
    Dole, V.P.: A relation between non-esterified fatty acids in plasma and the metabolism of glucose. J. Clin. Invest.35, 150–154 (1956)Google Scholar
  48. 48.
    Rabinowitz, D., Zierler, K.L.: Role of free fatty acids in forearm metabolism in man quantitated by use of insulin. J. Clin. Invest.41, 2191–2197 (1962)Google Scholar
  49. 49.
    Hagenfeldt, L., Wahren, J.: Human forearm muscle metabolism during exercise. II. Uptake, release and oxidation of individual FFA and glycerol. Scand. J. Clin. Lab. Invest.21, 263–276 (1968)Google Scholar
  50. 50.
    Havel, R.J., Pernow, B., Jones, N.: Uptake and release of free fatty acids and other metabolites in the legs of exercising man. J. Appl. Physiol.23, 90–99 (1967)Google Scholar
  51. 51.
    Hagenfeldt, L., Wahren, J., Pernow, B., Rät, L.: Uptake of individual free fatty acids by skeletal muscle and liver in man. J. Clin. Invest.51, 2324–2330 (1972)Google Scholar
  52. 52.
    Hagenfeldt, L., Wahren, J.: Metabolism of free fatty acids and ketone bodies in skeletal muscle. In: B. Pernow, B. Saltin (eds.): Muscle metabolism during exercise, p. 153–163. New York: Plenum Press 1971Google Scholar
  53. 53.
    Hagenfeldt, L., Wahren, J.: Human forearm muscle metabolism during exercise. III. Uptake, release and oxidation ofβ-hydroxybutyrate and observations on theβ-hydroxybutyrate/ acetoacetate ratio. Scand. J. Clin. Lab. Invest.21, 314–320 (1968)Google Scholar
  54. 54.
    Rennie, M.J., Park, D.M., Sulaiman, W.R.: Uptake and release of hormones and metabolites by tissues of exercising leg in man. Am. J. Physiol.231, 967–973 (1976)Google Scholar
  55. 55.
    Åkerblom, H.: Blood acetone bodies of juvenile diabetics after exercise. Ann. Paediatr. Fenn.11 (Suppl. 25), 1–48 (1965)Google Scholar
  56. 56.
    Löffler, F., Matschinsky, F., Wieland, O.: Über den Mechanismus der gesteigerten Ketonkörperbildung. II. Redox-Status des DPN der isolierten Rattenleber bei Durchströmung mit Fettsäuren. Biochem. Z.342, 76–84 (1965)Google Scholar
  57. 57.
    Björntorp, P., Berchtold, P., Grimby, G., Lindholm, B., Sänne, H., Tibblin, G., Wilhelmsen, L.: Effects of physical training on glucose tolerance, plasma insulin and lipids and on body composition in men after myocardial infarction. Acta Med. Scand.192, 439–443 (1972)Google Scholar
  58. 58.
    Maehlum, S., Pruett, E.E.R.: Muscular exercise and metabolism in male juvenile diabetics. II. Glucose tolerance after exercise. Scand. J. Clin. Lab. Invest.32, 149–153 (1973)Google Scholar
  59. 59.
    Engerbretson, D.L.: The effects of exercise upon diabetic control. J. Assoc. Phys. Ment. Rehab.19, 74–78 (1965)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • J. Wahren
    • 1
    • 2
    • 3
  • P. Felig
    • 1
    • 2
    • 3
  • L. Hagenfeldt
    • 1
    • 2
    • 3
  1. 1.Department of Clinical Physiology, Karolinska InstituteHuddinge University HospitalHuddingeSweden
  2. 2.Department of Internal MedicineYale University School of MedicineNew HavenUSA
  3. 3.Department of Clinical ChemistryKarolinska HospitalStockholmSweden

Personalised recommendations