Skip to main content
Log in

An improved hydrogen microcalorimeter for use with large molecules

  • Published:
Microchimica Acta Aims and scope Submit manuscript

Summary

An extremely sensitive hydrogen calorimeter has been developed for the purpose of determining the heats of hydrogenation of large molecules, particularly those of biochemical significance. High sensitivity is necessary because the substances to be studied are frequently expensive and difficult to purify. The present method has been evaluated by reproducing the known heats of hydrogenation of several isomers of hexene with a typical standard deviation and agreement with literature values of about 0.2 kcal/mole or less than 1 %. Typical sample size is in the range of 5 to 15 mg,

Zusammenfassung

Ein Wasserstoff-Kalorimeter besonderer Empfindlichkeit zur Bestimmung der Hydrierungswärme großer Moleküle, vor allem solcher von biochemischem Interesse, wurde entwickelt. Da die in Frage kommenden Stoffe teuer und auch schwer rein darstellbar sind, ist hohe Empfindlichkeit des Gerätes unerläßlich. Durch Bestimmung der aus der Literatur bekannten Hydrierungs wärme von etwa 0,2 Kcal/Mol verschiedener isomerer Hexene mit einer typischen Standardabweichung von weniger als 1% wurde das Verfahren überprüft. Einwaagen von 5–15 mg sind geeignet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Gibbs, Trans. Conn. Acad. III, 108 (1875); “The Collected Works of J. Willard Gibbs”, New Haven: Yale Univ. Press. 1948.

    Google Scholar 

  2. G. N. Lewis and M. Randall, “Thermodynamics and the Free Energy of Chemical Substances”, New York: McGraw-Hill. 1923. Ch. XIV.

    Google Scholar 

  3. E. A. Guggenheim, “Modern Thermodynamics by the Method of Willard Gibbs”, London: Methuen. 1933. p. 69 ff.

    Google Scholar 

  4. M. S. Kharasch, J. Res. Nat. Bur. Std.2, 359 (1929).

    Google Scholar 

  5. F. D. Rossini et al., “Selected Values of Physical and Thermodynamic Properties of Hydrocarbons and Related Compounds” (API Research Project 44), Pittsburgh: Carnegie Press. 1953.

    Google Scholar 

  6. D. R. Stull, E. F. Westrum Jr., and G. C. Sinke, “The Chemical Thermodynamics of Organic Compounds”, New York: Wiley. 1969.

    Google Scholar 

  7. L. J. P. Keffler, J. Physic. Chem.34, 1319 (1930).

    Google Scholar 

  8. G. B. Kistiakowsky, J. R. Ruhoff, H. A. Smith, and W. E. Vaughan, J. Amer. Chem. Soc.57, 65, 786 (1936); M. A. Dolliver, T. L. Gresham, G. B. Kistiakowsky, and W. E. Vaughan, J. Amer. Chem. Soc.59, 831 (1937);60, 440 (1937).

    Google Scholar 

  9. R. B. Williams, J. Amer. Chem. Soc.64, 1395 (1942); K. MacKenzie in S. Patai (ed.), “The Chemistry of Alkenes”, New York: Interscience. 1964. Ch. 7.

    Google Scholar 

  10. G. W. Wheland, “Resonance in Organic Chemistry”, New York: Wiley. 1955. p. 78 ff.

    Google Scholar 

  11. K. S. Pitzer, “Quantum Chemistry”, Englewood Cliffs: Prentice Hall. 1953. p. 184 ff; See, however, M. J. S. Dewar and S. Schmeising, “Conference on Hyperconjugation”, Indiana University, Bloomington, Indiana, New York: Pergamon Press. 1959. p. 88 ff.

    Google Scholar 

  12. R. B. Turner, P. Goebel, B. J. Mallon, W. v. E. Doering, J. F. Coburn and M. Pomerantz, J. Amer. Chem. Soc.90, 4315 (1968).

    Google Scholar 

  13. R. B. Turner, D. E. Nettleton, and M. Perelman, J. Amer. Chem. Soc.80, 1430 (1958); R. B. Turner, A. D. Jarrett, P. Goebel, and B. J. Mallon, J. Amer. Chem. Soc.95, 790 (1973).

    Google Scholar 

  14. R. B. Turner, W. R. Meador, and R. E. Winkler, J. Amer. Chem. Soc.79, 4116 (1957).

    Google Scholar 

  15. D. W. Rogers and F. J. McLafferty, Tetrahedron27, 3765 (1971).

    Google Scholar 

  16. A. B. Littlewood, “Gas Chromatography”, New York: Academic Press. 1962. p. 260 ff.

    Google Scholar 

  17. H. F. Bartolo and F. D. Rossini, J. Physic. Chem.64, 1685 (1960).

    Google Scholar 

  18. D. W. Rogers, Analyt. Chemistry43, 1468 (1971); D. W. Rogers and R. J. Sasiela, Mikrochim. Acta [Wien] 1973, 33; Talanta20, 232 (1973).

    Google Scholar 

  19. Bolab. Inc., Tinkham Avenue, Derry, N. Y.

  20. Catalog No. S-9055, E. H. Sargent, Springfield, N. Y.

  21. Time constant 2.5 s, Model 8436, Cole-Parmer Inst. Co. Chicago, Ill.

  22. Microlab, Mountain View, Calif., Model L. S. 1101.

  23. Leeds and Northrup, Model 4760, Philadelphia, Pa.

  24. Microcord 44, Photovolt Corp., New York, N. Y.

  25. Leeds and Northrup 24, Model 4775.

  26. Matheson, Coleman and Bell, The Matheson Co., Inc., East Rutherford, N. Y.

  27. Silastic 732, Dow Chemical Co., Midland, Mich.

  28. Contact between activated catalyst and organic material as in wiping a freshly used reaction chamber with a paper towel may cause spontaneous combustion.

  29. J. T. Baker Chem. Co., Phillipsburg, N. J.

  30. Hamilton Syringe Co., Whittier, Calif.

  31. Reprojector, Shandon Scientific Co., Siwickley, Pa.

  32. H. A. Skinner, in H. D. Brown (ed.), “Biochemical Microcalorimetry”, New York: Academic Press. 1969. p. 6.

    Google Scholar 

  33. Chemical Samples Co., Columbus, Ohio.

  34. J. B. Conn, G. B. Kistiakowsky, and E. A. Smith, J. Amer. Chem. Soc.61, 1868 (1939).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rogers, D.W., Papadimetriou, P.M. & Siddiqui, N.A. An improved hydrogen microcalorimeter for use with large molecules. Mikrochim Acta 64, 389–400 (1975). https://doi.org/10.1007/BF01219204

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01219204

Keywords

Navigation