Advertisement

Communications in Mathematical Physics

, Volume 123, Issue 4, pp 641–658 | Cite as

Morse theory interpretation of topological quantum field theories

  • J. M. F. Labastida
Article

Abstract

Topological quantum field theories are interpreted as a generalized form of Morse theory. This interpretation is applied to formulate the simplest topological quantum field theory: topological quantum mechanics. The only non-trivial topological invariant corresponding to this theory is computed and identified with the Euler characteristic. Using field theoretical methods this topological invariant is calculated in different ways and in the process a proof of the Gauss-Bonnet-Chern-Avez formula as well as some results of degenerate Morse theory are obtained.

Keywords

Neural Network Statistical Physic Field Theory Complex System Quantum Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Witten, E.: Commun. Math. Phys.117, 353 (1988)Google Scholar
  2. 2.
    Atiyah, M. F.: New invariants of three and four dimensional manifolds. To appear in the proceedings of the Symposium on the Mathematical Heritage of Herman Weyl (Chapel Hill, May, 1987), Wells, R. et alGoogle Scholar
  3. 3.
    Witten, E.: Commun. Math. Phys.118, 601 (1988)Google Scholar
  4. 4.
    Labastida, J. M. F., Pernici, M.: Phys. Lett.212B, 56 (1988)Google Scholar
  5. 5.
    Baulieu, L., Singer, I. M.: Talk at the “LAPP Meeting on Conformal Field Theories and Related Topics,” Annecy-le-Vieux, 1988Google Scholar
  6. 6.
    Birmingham, D., Rakowski, M., Thompson, G.: Topological field theories, Nicoli Maps and BRST quantization. ICTP preprints IC/88/100, IC/88/149, 1988; Mansfield, P.: The first donaldson invariant as the winding number of a Nicoli map. Oxford preprint, 1988Google Scholar
  7. 7.
    Horne, J. H.: Superspace versions of topological theories. Princeton preprint, PUPT-1096, June 1988Google Scholar
  8. 8.
    Gribov, V. N.: Nucl. Phys.B139, 1 (1978); Singer, I. M.: Commun. Math. Phys.60, 7 (1978)Google Scholar
  9. 9.
    Donaldson, S.: J. Diff. Geom.18, 269 (1983), ibid.26, 397 (1987) and Polynomial Invariants for Smooth Manifolds. Oxford preprintGoogle Scholar
  10. 10.
    Ouvry, S., Stora, R., van Baal, P.: On the Algebraic Characterization of Witten's Topological Yang-Mills Theory. CERN preprint, CERN-TH.5224/88, November 1988Google Scholar
  11. 11.
    Witten, E.: Phys. Lett.206B, 601 (1988); Labastida, J. M. F., Pernici, M.: Phys. Lett.213B, 319 (1988)Google Scholar
  12. 12.
    Labastida, J. M. F., Pernici, M., Witten, E.: Nucl. Phys.B310, 611 (1988)Google Scholar
  13. 13.
    Montano, D., Sonnenschein, J.: Topological strings. SLAC preprint, SLAC-PUB-4664, June 1988Google Scholar
  14. 14.
    Milnor, J.: Morse theory. Ann. Math. Stud., vol. 51. Princeton, NJ: Princeton University Press 1963Google Scholar
  15. 15.
    See, for example, Atiyah, M. F., Bott, R.: Phil. Trans. R. Soc. LondonA308, 523 (1982), and references thereinGoogle Scholar
  16. 16.
    Chern, S. S.: Ann. Math.46, 674 (1942)Google Scholar
  17. 17.
    Alvarez-Gaumé, L.: Commun. Math. Phys.90, 161 (1983); Friedan, D., Windey, P.: Nucl. Phys.B235, 395 (1984)Google Scholar
  18. 18.
    Alvarez-Gaumé, L., Freedman, D. Z., Mukhi, S.: Ann. Phys.134, 85 (1981)Google Scholar
  19. 19.
    See, for example, Milnor, J.: Topology from the Differentiable Viewpoint. Charlottesville, VA: University Press of Virginia 1965Google Scholar
  20. 20.
    Witten, E.: 2+1 Dimensional Gravity as an Exactly Soluble System. IAS preprint, IASSNS-HEP-88/32, October 1988Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • J. M. F. Labastida
    • 1
  1. 1.Theory DivisionCERNGeneva 23Switzerland

Personalised recommendations