Abstract
We discuss stochastic Schrödinger operators and Jacobi matrices with wave functions, taking values in ℂl so there are 2l Lyaponov exponents γ1≧...≧γl≧0≧γ l+1≧...≧γ2l =−γ1. Our results include the fact that if γ1=0 on a set positive measure, thenV is deterministic and one that says that {E|exactly 2j γ's are zero} is the essential support of the a.c. spectrum of multiplicity 2j.
Similar content being viewed by others
References
Akhiezer, N. I.: The classical moment problem and some related questions in analysis. Oliver and Boyd: University Mathematical Monographs 1965
Akhiezer, N. I., Glazman, I. M.: Theory of linear operators in Hilbert space. New York: Ungar 1961
Avron, J., Simon, B.: Almost periodic Schrödinger operators, II. The integrated density of states. Duke Math. J.50, 369–391 (1983)
Carmona, R.: Random Schrödinger operators. In: École d'Été de Probabilités de Saint-Flour XIV-1984. Henneguin, P. L. (ed.) Lecture Notes in Mathematics, vol.1180. Berlin, Heidelberg, New York: Springer 1986
Craig, W., Simon, B.: Subharmonicity of the Lyaponov index. Duke Math. J.50, 551–560 (1983)
Craig, W., Simon, B.: Log Hölder continuity of the integrated density of states for stochastic Jacobi matrices. Commun. Math. Phys.90, 207–218 (1983)
Cycon, H., Froese, R., Kirsch, W., Simon, B.: Schrödinger operators, with application to quantum mechanics and global geometry. Berlin, Heidelberg, New York: Springer 1987
Gui'varch, Y., Raugi, A.: Frontière de Furstenberg, Propriétés de contraction et théoŕèmes de convergence. Z. Wahrscheinlichteitstheor. Verw. Geb.69, 187–242 (1985)
Ishii, K.: Localization of eigenstates and transport phenomena in one-dimensional disordered systems. Prog. Theor. Phys. [Suppl.]53, 77 (1973)
Kotani, S.: Ljaponov indices determine absolutely continuous spectra of stationary random one-dimensional Schrödinger operators. In: Stochastic analysis. Ito, K. (ed.) pp. 225–248. North Holland: Amsterdam 1984
Marchenko, V. A.: Sturm-Liouville operators and applications, Operator theory: Advances and Applications, Vol.22. Basel, Boston, Stuttgart: Birkhäuser 1986
Naimark, M. A.: Linear differential operators, Part II. New York: Ungar 1967
Pastur, L.: Spectral properties of disordered systems in one-body approximation. Commun. Math. Phys.75, 179 (1980)
Port, S. C., Stone, C. J.: Brownian motion and classical potential theory. Probability and mathematical statistics. New York: Academic Press 1978
Reed, M., Simon, B.: Methods of modern mathematical physics, III. Scattering theory. New York: Academic Press 1979
Reed, M., Simon, B.: Methods of modern mathematical physics, IV. Analysis of operators. New York: Academic Press 1978
Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publ. IHES50, 275 (1979)
Simon, B.: Schrödinger semigroups. Bull. AMS7, 447–526 (1982)
Simon, B.: Kotani theory for one-dimensional stochastic Jacobi matrices. Commun. Math. Phys.89, 227 (1983)
Spencer, T.: The Schrödinger equation with a random potential—A mathematical review. In: Critical phenomena, random systems, gauge theories. Les Houches, XLIII. Osterwalder K., Stora, R. (eds.)
Thouless, D.: A relation between the density of states and range of localization for one-dimensional random systems. J. Phys.C5 77 (1972)
Lacroix, J.: Localisation pour l'opérateur de Schrödinger aléatoire dans un rutan, Ann. Inst. H. PoincaréA40, 97–116 (1984)
Bougerol, P. Lacroix, J.: Products of random matrices with applications to Schrödinger operators. Progress in probability and statistics Vol.8. Basel, Boston, Stuttgart: Birkhäuser 1985
Author information
Authors and Affiliations
Additional information
Communicated by T. Spencer
Research partially supported by USNSF under grant DMS-8416049
Rights and permissions
About this article
Cite this article
Kotani, S., Simon, B. Stochastic Schrödinger operators and Jacobi matrices on the strip. Commun.Math. Phys. 119, 403–429 (1988). https://doi.org/10.1007/BF01218080
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01218080