Skip to main content
Log in

Stochastic Schrödinger operators and Jacobi matrices on the strip

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We discuss stochastic Schrödinger operators and Jacobi matrices with wave functions, taking values in ℂl so there are 2l Lyaponov exponents γ1≧...≧γl≧0≧γ l+1≧...≧γ2l =−γ1. Our results include the fact that if γ1=0 on a set positive measure, thenV is deterministic and one that says that {E|exactly 2j γ's are zero} is the essential support of the a.c. spectrum of multiplicity 2j.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhiezer, N. I.: The classical moment problem and some related questions in analysis. Oliver and Boyd: University Mathematical Monographs 1965

    Google Scholar 

  2. Akhiezer, N. I., Glazman, I. M.: Theory of linear operators in Hilbert space. New York: Ungar 1961

    Google Scholar 

  3. Avron, J., Simon, B.: Almost periodic Schrödinger operators, II. The integrated density of states. Duke Math. J.50, 369–391 (1983)

    Google Scholar 

  4. Carmona, R.: Random Schrödinger operators. In: École d'Été de Probabilités de Saint-Flour XIV-1984. Henneguin, P. L. (ed.) Lecture Notes in Mathematics, vol.1180. Berlin, Heidelberg, New York: Springer 1986

    Google Scholar 

  5. Craig, W., Simon, B.: Subharmonicity of the Lyaponov index. Duke Math. J.50, 551–560 (1983)

    Google Scholar 

  6. Craig, W., Simon, B.: Log Hölder continuity of the integrated density of states for stochastic Jacobi matrices. Commun. Math. Phys.90, 207–218 (1983)

    Google Scholar 

  7. Cycon, H., Froese, R., Kirsch, W., Simon, B.: Schrödinger operators, with application to quantum mechanics and global geometry. Berlin, Heidelberg, New York: Springer 1987

    Google Scholar 

  8. Gui'varch, Y., Raugi, A.: Frontière de Furstenberg, Propriétés de contraction et théoŕèmes de convergence. Z. Wahrscheinlichteitstheor. Verw. Geb.69, 187–242 (1985)

    Google Scholar 

  9. Ishii, K.: Localization of eigenstates and transport phenomena in one-dimensional disordered systems. Prog. Theor. Phys. [Suppl.]53, 77 (1973)

    Google Scholar 

  10. Kotani, S.: Ljaponov indices determine absolutely continuous spectra of stationary random one-dimensional Schrödinger operators. In: Stochastic analysis. Ito, K. (ed.) pp. 225–248. North Holland: Amsterdam 1984

    Google Scholar 

  11. Marchenko, V. A.: Sturm-Liouville operators and applications, Operator theory: Advances and Applications, Vol.22. Basel, Boston, Stuttgart: Birkhäuser 1986

    Google Scholar 

  12. Naimark, M. A.: Linear differential operators, Part II. New York: Ungar 1967

    Google Scholar 

  13. Pastur, L.: Spectral properties of disordered systems in one-body approximation. Commun. Math. Phys.75, 179 (1980)

    Google Scholar 

  14. Port, S. C., Stone, C. J.: Brownian motion and classical potential theory. Probability and mathematical statistics. New York: Academic Press 1978

    Google Scholar 

  15. Reed, M., Simon, B.: Methods of modern mathematical physics, III. Scattering theory. New York: Academic Press 1979

    Google Scholar 

  16. Reed, M., Simon, B.: Methods of modern mathematical physics, IV. Analysis of operators. New York: Academic Press 1978

    Google Scholar 

  17. Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publ. IHES50, 275 (1979)

    Google Scholar 

  18. Simon, B.: Schrödinger semigroups. Bull. AMS7, 447–526 (1982)

    Google Scholar 

  19. Simon, B.: Kotani theory for one-dimensional stochastic Jacobi matrices. Commun. Math. Phys.89, 227 (1983)

    Google Scholar 

  20. Spencer, T.: The Schrödinger equation with a random potential—A mathematical review. In: Critical phenomena, random systems, gauge theories. Les Houches, XLIII. Osterwalder K., Stora, R. (eds.)

  21. Thouless, D.: A relation between the density of states and range of localization for one-dimensional random systems. J. Phys.C5 77 (1972)

    Google Scholar 

  22. Lacroix, J.: Localisation pour l'opérateur de Schrödinger aléatoire dans un rutan, Ann. Inst. H. PoincaréA40, 97–116 (1984)

    Google Scholar 

  23. Bougerol, P. Lacroix, J.: Products of random matrices with applications to Schrödinger operators. Progress in probability and statistics Vol.8. Basel, Boston, Stuttgart: Birkhäuser 1985

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by T. Spencer

Research partially supported by USNSF under grant DMS-8416049

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotani, S., Simon, B. Stochastic Schrödinger operators and Jacobi matrices on the strip. Commun.Math. Phys. 119, 403–429 (1988). https://doi.org/10.1007/BF01218080

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01218080

Keywords

Navigation