Skip to main content
Log in

Asymptotics of the spectrum and the Selberg zeta function on the space of Riemann surfaces

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

LetZ(s, R) be the Selberg zeta function of a compact Riemann surfaceR. We study the behavior ofZ(s, R) asR tends to infinity in the moduli space of stable curves. The main result is an estimate forZ(s, R) valid fors in a neighborhood, depending only on the genus, ofs=1. Our analysis gives an alternate proof of the Belavin-Knizhnik double pole result, [5].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abikoff, W.: Topics in the real analytic theory of Teichmüller space. Lecture Notes in Mathematics, Vol. 820. Berlin, Heidelberg, New York: Springer 1980

    Google Scholar 

  2. Ahlfors, L.V.: Some remarks on Teichmüller's space of Riemann surfaces. Ann. Math.74, 171–191 (1961)

    Google Scholar 

  3. Ahlfors, L.V.: Conformal invariants. New York: McGraw-Hill 1973

    Google Scholar 

  4. Alvarez, O.: Theory of strings with boundaries. Nucl. Phys. B216, 125–184 (1983)

    Google Scholar 

  5. Belavin, A.A., Knizhnik, V.G.: Algebraic geometry and the geometry of quantum strings. Phys. Lett. B168, 201 (1986)

    Google Scholar 

  6. Bers, L.: Spaces of degenerating Riemann surfaces. Ann. Math. Stud.79, 43–55 (1974)

    Google Scholar 

  7. Buser, P.: Riemannsche Flächen mit Eigenwerten in (0,1/4). Comment. Math. Helv.52, 25–34 (1977)

    Google Scholar 

  8. Cheng, S.Y.: Eigenvalue comparison theorems and its geometric applications. Math. Z.143, 289–297 (1975)

    Google Scholar 

  9. D'Hoker, E., Phong, D.H.: Multiloop amplitudes for the bosonic Polyakov string. Nucl. Phys. B269, 205–234 (1986)

    Google Scholar 

  10. D'Hoker, E., Phong, D.H.: On determinants of Laplacians on Riemann surfaces. Commun. Math. Phys.105, 537 (1986)

    Google Scholar 

  11. Dodzuik, J., Pignataro, T., Randol, B., Sullivan, D.: Estimating small eigenvalues on Riemann surfaces. Preprint

  12. Earle, C., Marden, A.: Manuscript in preparation

  13. Fay, J.: Analytic torsion and Prym differentials. Ann. Math. Stud.97, 107–122 (1981)

    Google Scholar 

  14. Fay, J.: Fourier coefficients of the resolvent for a Fuchsian group. J. Reine Angew. Math.293, 143–203 (1977)

    Google Scholar 

  15. Fried, D.: Analytic torsion and closed geodesics on hyperbolic manifolds. Preprint

  16. Friedan, D.: Introduction to Polyakov's string theory. In: Les Houches, XXXIX, 1982: Recent advances in field theory and statistical mechanics. New York: Elsevier North Holland 1984

    Google Scholar 

  17. Gava, E., Iengo, R., Jayaraman, T., Ramachandran, R.: Multiloop divergences in the closed bosonic string theory. Preprint

  18. Hejhal, D.A.: The Selberg trace formula and the Riemann zeta function. Duke Math. J.43, 441–482 (1976)

    Google Scholar 

  19. Hejhal, D.A.: A continuity method for spectral theory on Fuchsian groups. In: Modular forms. Rankins, R.A. (ed.). Ellis-Horwood (1984) pp. 107–140

  20. Hejhal, D.A.: Manuscript in preparation

  21. Kierlanczyk, M.: Determinants of Laplacians. M.I.T. Thesis, 1986

  22. Masur, H.: The extension of the Weil-Petersson metric to the boundary of Teichmüller space. Duke Math. J.43, 623–635 (1976)

    Google Scholar 

  23. Matelski, J.P.: A compactness theorem for Fuchsian groups of the second kind. Duke Math. J.43, 829–840 (1976)

    Google Scholar 

  24. McKean, H.P.: Selberg's trace formula as applied to a compact Riemann surface. Commun. Pure Appl. Math.25, 225–246 (1972)

    Google Scholar 

  25. Mumford, D.: A remark on Mahler's compactness theorem. Proc. A.M.S.28, 289–294 (1971)

    Google Scholar 

  26. Polyakov, A.M.: Quantum geometry of bosonic strings. Phys. Lett.103B, 207 (1981)

    Google Scholar 

  27. Randol, B.: Cylinders in Riemann surfaces. Comment. Math. Helv.54, 1–5 (1979)

    Google Scholar 

  28. Ray, D.B., Singer, I.M.: Analytic torsion for complex manifolds. Ann. Math.98, 154–177 (1973)

    Google Scholar 

  29. Sarnak, P.: Determinants of Laplacians. Commun. Math. Phys.110, 113–120 (1987)

    Google Scholar 

  30. Schoen, R., Wolpert, S., Yau, S.T.: Geometric bounds on the low eigenvalues of a compact surface. Proc. Symp. Pure Math.36, 279–285 (1980)

    Google Scholar 

  31. Weinberger, H.: Variational methods for eigenvalue approximation. Philadelphia, PA: Soc. Ind. Appl. Math. 1974

    Google Scholar 

  32. Wolpert, S.A.: On the symplectic geometry of deformations of a hyperbolic surface. Ann. Math.117, 207–234 (1983)

    Google Scholar 

  33. Wolpert, S.A.: On the Weil-Petersson geometry of the moduli space of curves. Am. J. Math.107, 969–997 (1985)

    Google Scholar 

  34. Wolpert, S.A.: Chern forms and the Riemann tensor for the moduli space of curves. Invent. Math.85, 119 (1986)

    Google Scholar 

  35. Ahlfors, L.V.: Lectures on quasiconformal mappings. New York: Van Nostrand 1966

    Google Scholar 

  36. Cheng, S.Y., Li, P.: Heat kernel estimates and lower bounds for the eigenvalues. Comment. Math. Helv.56, 327–338 (1981)

    Google Scholar 

  37. Fay, J.D.: Theta functions on Riemann surfaces. Lecture Notes Vol. 352. Berlin, Heidleberg, New York: Springer 1973

    Google Scholar 

  38. Hejhal, D.A.: The Selberg trace formula for PSL (2; ℝ), Vol. 1. Lecture Notes Vol. 548. Berlin, Heidelberg, New York: Springer 1976

    Google Scholar 

  39. Nelson, P.: Lectures on strings and moduli space. Preprint

  40. Hejhal, D.A.: The Selberg trace formula for PSL (2; ℝ), Vol. 2. Lecture Notes Vol. 1001. Berlin, Heidelberg, New York: Springer 1983

    Google Scholar 

  41. McKean, H.P., Singer, I.M.: Curvature and the eigenvalues of the Laplacian. J. Differ. Geom.1, 43–69 (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S.-T. Yau

Partially supported by the National Science Foundation and the Institute for Physical Science and Technology, University of Maryland, College Park, MD, USA

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolpert, S.A. Asymptotics of the spectrum and the Selberg zeta function on the space of Riemann surfaces. Commun.Math. Phys. 112, 283–315 (1987). https://doi.org/10.1007/BF01217814

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01217814

Keywords

Navigation