Abstract
LetZ(s, R) be the Selberg zeta function of a compact Riemann surfaceR. We study the behavior ofZ(s, R) asR tends to infinity in the moduli space of stable curves. The main result is an estimate forZ(s, R) valid fors in a neighborhood, depending only on the genus, ofs=1. Our analysis gives an alternate proof of the Belavin-Knizhnik double pole result, [5].
Similar content being viewed by others
References
Abikoff, W.: Topics in the real analytic theory of Teichmüller space. Lecture Notes in Mathematics, Vol. 820. Berlin, Heidelberg, New York: Springer 1980
Ahlfors, L.V.: Some remarks on Teichmüller's space of Riemann surfaces. Ann. Math.74, 171–191 (1961)
Ahlfors, L.V.: Conformal invariants. New York: McGraw-Hill 1973
Alvarez, O.: Theory of strings with boundaries. Nucl. Phys. B216, 125–184 (1983)
Belavin, A.A., Knizhnik, V.G.: Algebraic geometry and the geometry of quantum strings. Phys. Lett. B168, 201 (1986)
Bers, L.: Spaces of degenerating Riemann surfaces. Ann. Math. Stud.79, 43–55 (1974)
Buser, P.: Riemannsche Flächen mit Eigenwerten in (0,1/4). Comment. Math. Helv.52, 25–34 (1977)
Cheng, S.Y.: Eigenvalue comparison theorems and its geometric applications. Math. Z.143, 289–297 (1975)
D'Hoker, E., Phong, D.H.: Multiloop amplitudes for the bosonic Polyakov string. Nucl. Phys. B269, 205–234 (1986)
D'Hoker, E., Phong, D.H.: On determinants of Laplacians on Riemann surfaces. Commun. Math. Phys.105, 537 (1986)
Dodzuik, J., Pignataro, T., Randol, B., Sullivan, D.: Estimating small eigenvalues on Riemann surfaces. Preprint
Earle, C., Marden, A.: Manuscript in preparation
Fay, J.: Analytic torsion and Prym differentials. Ann. Math. Stud.97, 107–122 (1981)
Fay, J.: Fourier coefficients of the resolvent for a Fuchsian group. J. Reine Angew. Math.293, 143–203 (1977)
Fried, D.: Analytic torsion and closed geodesics on hyperbolic manifolds. Preprint
Friedan, D.: Introduction to Polyakov's string theory. In: Les Houches, XXXIX, 1982: Recent advances in field theory and statistical mechanics. New York: Elsevier North Holland 1984
Gava, E., Iengo, R., Jayaraman, T., Ramachandran, R.: Multiloop divergences in the closed bosonic string theory. Preprint
Hejhal, D.A.: The Selberg trace formula and the Riemann zeta function. Duke Math. J.43, 441–482 (1976)
Hejhal, D.A.: A continuity method for spectral theory on Fuchsian groups. In: Modular forms. Rankins, R.A. (ed.). Ellis-Horwood (1984) pp. 107–140
Hejhal, D.A.: Manuscript in preparation
Kierlanczyk, M.: Determinants of Laplacians. M.I.T. Thesis, 1986
Masur, H.: The extension of the Weil-Petersson metric to the boundary of Teichmüller space. Duke Math. J.43, 623–635 (1976)
Matelski, J.P.: A compactness theorem for Fuchsian groups of the second kind. Duke Math. J.43, 829–840 (1976)
McKean, H.P.: Selberg's trace formula as applied to a compact Riemann surface. Commun. Pure Appl. Math.25, 225–246 (1972)
Mumford, D.: A remark on Mahler's compactness theorem. Proc. A.M.S.28, 289–294 (1971)
Polyakov, A.M.: Quantum geometry of bosonic strings. Phys. Lett.103B, 207 (1981)
Randol, B.: Cylinders in Riemann surfaces. Comment. Math. Helv.54, 1–5 (1979)
Ray, D.B., Singer, I.M.: Analytic torsion for complex manifolds. Ann. Math.98, 154–177 (1973)
Sarnak, P.: Determinants of Laplacians. Commun. Math. Phys.110, 113–120 (1987)
Schoen, R., Wolpert, S., Yau, S.T.: Geometric bounds on the low eigenvalues of a compact surface. Proc. Symp. Pure Math.36, 279–285 (1980)
Weinberger, H.: Variational methods for eigenvalue approximation. Philadelphia, PA: Soc. Ind. Appl. Math. 1974
Wolpert, S.A.: On the symplectic geometry of deformations of a hyperbolic surface. Ann. Math.117, 207–234 (1983)
Wolpert, S.A.: On the Weil-Petersson geometry of the moduli space of curves. Am. J. Math.107, 969–997 (1985)
Wolpert, S.A.: Chern forms and the Riemann tensor for the moduli space of curves. Invent. Math.85, 119 (1986)
Ahlfors, L.V.: Lectures on quasiconformal mappings. New York: Van Nostrand 1966
Cheng, S.Y., Li, P.: Heat kernel estimates and lower bounds for the eigenvalues. Comment. Math. Helv.56, 327–338 (1981)
Fay, J.D.: Theta functions on Riemann surfaces. Lecture Notes Vol. 352. Berlin, Heidleberg, New York: Springer 1973
Hejhal, D.A.: The Selberg trace formula for PSL (2; ℝ), Vol. 1. Lecture Notes Vol. 548. Berlin, Heidelberg, New York: Springer 1976
Nelson, P.: Lectures on strings and moduli space. Preprint
Hejhal, D.A.: The Selberg trace formula for PSL (2; ℝ), Vol. 2. Lecture Notes Vol. 1001. Berlin, Heidelberg, New York: Springer 1983
McKean, H.P., Singer, I.M.: Curvature and the eigenvalues of the Laplacian. J. Differ. Geom.1, 43–69 (1967)
Author information
Authors and Affiliations
Additional information
Communicated by S.-T. Yau
Partially supported by the National Science Foundation and the Institute for Physical Science and Technology, University of Maryland, College Park, MD, USA
Rights and permissions
About this article
Cite this article
Wolpert, S.A. Asymptotics of the spectrum and the Selberg zeta function on the space of Riemann surfaces. Commun.Math. Phys. 112, 283–315 (1987). https://doi.org/10.1007/BF01217814
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01217814