Abstract
It is shown that 2+1 dimensional quantum Yang-Mills theory, with an action consisting purely of the Chern-Simons term, is exactly soluble and gives a natural framework for understanding the Jones polynomial of knot theory in three dimensional terms. In this version, the Jones polynomial can be generalized fromS 3 to arbitrary three manifolds, giving invariants of three manifolds that are computable from a surgery presentation. These results shed a surprising new light on conformal field theory in 1+1 dimensions.
Similar content being viewed by others
References
Atiyah, M. F.: New invariants of three and four dimensional manifolds. In: The mathematical heritage of Hermann Weyl. Proc. Symp. Pure Math., vol.48. Wells R. (ed.). Providence, RI: American Mathematical Society 1988, pp. 285–299
Donaldson, S.: An application of gauge theory to the topology of four manifolds. J. Diff. Geom.18, 269 (1983), Polynomial invariants for smooth four-manifolds. Oxford preprint
Floer, A.: An instanton invariant for three manifolds. Courant Institute preprint (1987). Morse theory for fixed points of symplectic diffeomorphisms. Bull. AMS16, 279 (1987)
Witten, E.: Topological quantum field theory. Commun. Math. Phys.117, 353 (1988)
Jones, V. F. R.: Index for subfactors. Invent. Math.72, 1 (1983). A polynomial invariant for links via von Neumann algebras. Bull. AMS12, 103 (1985), Hecke algebra representations of braid groups and link polynomials. Ann. Math.126, 335 (1987)
Freyd, P., Yetter, D., Hoste, J., Lickorish, W. B. R., Millett, K., Ocneanu, A.: A new polynomial invariant of knots and links. Bull. AMS12, 239 (1985)
Kauffman, L.: State models and the Jones polynomial. Topology26, 395 (1987). Statistical mechaniscs and the Jones polynomial, to appear in the Proceedings of the July, 1986, conference on Artin's braid group, Santa Cruz, California; An invariant of regular isotopy preprint
Turaev, V. G.: The Yang-Baxter equation and invariants of links. LOMI preprint E-3-87, Inv. Math.92, 527 (1988)
Przytycki, J. H., Traczyk, P.: Invariants of links of conway type. Kobe J. Math.,4, 115 (1988)
Birman, J.: On the Jones polynomial of closed 3-braids. Invent. Math.81, 287 (1985).
Birman, J., Wenzl, H. Link polynomials and a new algebra, preprint
Tsuchiya, A., Kanie, Y.: In: Conformal field theory and solvable lattice models. Adv. Stud. Pure math.16, 297 (1988); Lett. Math. Phys.13, 303 (1987)
Verlinde, E.: Fusion rules and modular transformations in 2d conformal field theory. Nucl. Phys.B 300, 360 (1988)
Moore, G., Seiberg, N.: Polynomial equations for rational conformal field theories. To appear in Phys. Lett. B, Naturality in conformal field theory. To appear in Nucl. Phys. B, Classical and quantum conformal field theory. IAS preprint HEP-88/35
Schroer, B.: Nucl. Phys.295, 4 (1988) K.-H. Rehren, Schroer, B.: Einstein causality and Artin braids. FU preprint (1987)
Fröhlich, J.: Statistics of fields, the Yang-Baxter equation, and the theory of links and knots. 1987 Cargese lectures, to appear In Nonperturbative quantum field theory. New York: Plenum Press
Segal, G.: Conformal field theory. Oxford preprint; and lecture at the IAMP Congress, Swansea, July, 1988
Gromov, M.: Pseudo-holomorphic curves in symplectic manifolds. Invent. Math.82, 307 (1985)
Schwarz, A.: The partition function of degenerate quadratic functional and Ray-Singer invariants. Lett. Math. Phys.2, 247 (1978)
Schonfeld, J.: A mass term for three dimensional gauge fields. Nucl. Phys.B 185, 157 (1981)
Jackiw, R., Templeton, S.: How superrenormalizable theories cure their infrared divergences. Phys. Rev.D 23, 2291 (1981)
Deser, S., Jackiw, R., Templeton, S.: Three dimensional massive gauge theories. Phys. Rev. Lett.48, 975 (1983). Deser, S., Jackiw, R., Templeton, S. Topologically massive gauge theory. Ann. Phys. NY140, 372 (1984)
Zuckerman, G.: Action principles and global geometry. In: The proceedings of the 1986 San Diego Summer Workshop, Yau, S.-T. (ed.)
Polyakov, A. M.: Fermi-bose transmutations induced by gauge fields. Mod. Phys. Lett.A 3, 325 (1988)
Hagen, C. R.: Ann. Phys.157, 342 (1984)
Arovas, D., Schrieffer, R., Wilczek, F., Zee, A.: Statistical mechanics of anyons. Nucl. Phys.B 251 [FS 13], 117 (1985)
Witten, E.: Non-Abelian bosonization in two dimensions. Commun. Math. Phys.92, 455 (1984)
Ray, D., Singer, I.: Adv. Math.7, 145 (1971), Ann. Math.98 154 (1973)
Deser, S., Jackiw, R., Templeton, S.: In [21] ; Affleck, I., Harvey, J., Witten, E.: Nucl. Phys.B 206, 413 (1982)
Redlich, A. N.: Gauge invariance and parity conservation of three-dimensional fermions. Phys. Rev. Lett.52, 18 (1984)
Alvarez-Gaumé, L., Witten, E.: Gravitational anomalies. Nucl. Phys.B 234, 269 (1983)
Alvarez-Gaumé, Della Pietra, S., Moore, G.: Anomalies and odd dimensions. Ann. Phys. (NY)163, 288 (1985)
Atiyah, M.F.: A note on the eta invariant (unpublished)
Singer, I.M.: Families of Dirac operators with applications to Physics. Astérisque,1985, p. 323
Atiyah, M. F., Patodi, V., Singer, I.: Math. Proc. Camb. Phil. Soc.77, 43 (1975),78, 405 (1975),79, 71 (1976)
Wilczek, F., Zee, A.: Linking numbers, spin, and statistics of solitons. Phys. Rev. Lett.51, 2250 (1983)
Friedan, D., Shenker, S.: Nucl. Phys.B 281, 509 (1987)
Belavin, A., Polyakov, A. M., Zamolodchikov, A.: Nucl. Phys.B (1984)
Atiyah, M. F., Bott, R.: The Yang-Mills equations over Riemann surfaces. Phil. Trans. R. Soc. Lond.A 308, 523 (1982)
Quillen, D.: Determinants of Cauchy-Riemann operators over a Riemann surface. Funct. Anal. Appl.19, 31 (1986)
Drinfeld, V.: Quantum groups. In: The Proceedings of the International Congress of Mathematicians, Berkeley 1986, Vol. 1, pp. 798–820
Gepner, D., Witten, E.: String theory on group manifolds. Nucl. Phys. B278, 493 (1986)
Kac, V. G.: Infinite dimensional Lie algebras. Cambridge: Cambridge University Press (1985)
Kac, V. G., Peterson, D. H.: Adv. Math.53, 125 (1984)
Kac, V. G., Wakimoto, M.: Adv. Math.70, 156 (1988)
Witten, E.: 2+1 dimensional gravity as an exactly soluble system. IAS preprint HEP-88/32
Segal, G.: Unitary representation of some infinite dimensional groups. Commun. Math. Phys.80, 301 (1981)
Author information
Authors and Affiliations
Additional information
Communicated by A. Jaffe
An expanded version of a lecture at the IAMP Congress, Swansea, July, 1988
Research supported in part by NSF Grant No. 86-20266, and NSF Waterman Grant 88–17521
Rights and permissions
About this article
Cite this article
Witten, E. Quantum field theory and the Jones polynomial. Commun.Math. Phys. 121, 351–399 (1989). https://doi.org/10.1007/BF01217730
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01217730