Skip to main content
Log in

Response of axons and glia at the site of anastomosis between the optic nerve and cellular or acellular sciatic nerve grafts

  • Published:
Journal of Neurocytology

Summary

Axonal and glial reactions at the site of optic nerve section and at the junctional zone between optic nerve and normal or acellular peripheral nerve grafts have been studied. Following optic nerve section, no axons grew into the distal optic nerve stump. Similarly, no axons invaded the acellular peripheral nerve grafts, although in both instances fibres did regenerate into the junctional zone and a few remained there at least until 30 days post lesion (dpl, the duration of the experiments). Axons regenerated into normal peripheral nerve grafts by 3–5 dpl and by 10 dpl large numbers had penetrated deeply into the grafts. The glial response to injury appeared similar in both groups of grafted animals. Astrocytes and oligodendrocytes grew out into the junctional zone over the 5–7 day period and invaded the margins of the cellular grafts by 10 dpl. They did not penetrate the acellular nerves or distal optic nerve stumps. We were unable to determine whether Schwann cells invaded the junctional zone from the normal peripheral nerve grafts. Schwann cells are both GFAP+ and Vim+, especially when reacting after injury, and Lam when not associated with axons: it is therefore possible that Schwann cells from the cellular grafts contributed to the population of GFAP+, Vim+ cells in the junctional zone of the cellular grafts. Anti-laminin immuno-reactivity persisted in the basal lamina tubes of both the normal and acellular peripheral nerve grafts. Thus, the failure of axon regeneration into acellular peripheral nerve grafts can be correlated with the absence of Schwann cells and does not appear to be related to the presence of laminin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, R., Jerdan, J. &Hewitt, A. T. (1985) Responses of cultured neural retinal cells to substratum-bound laminin and other extracellular matrix molecules.Developmental Biology 112, 100–14.

    Google Scholar 

  • Anderson, P. N. &Turmaine, M. (1986) Peripheral nerve regeneration through grafts of living and freeze-dried CNS tissue.Neuropathology and Applied Neurobiology 12, 389–99.

    Google Scholar 

  • Bernstein, J. J., Getz, R., Jefferson, M. &Kelemen, M. (1985) Astrocytes secrete basal lamina after hemisection of rat spinal cord.Brain Research 327, 135–41.

    Google Scholar 

  • Berry, M., Maxwell, W. L., Logan, A., Mathewson, A., McConnell, P., Ashurst, D. E. &Thomas, G. H. (1983) Deposition of scar tissue in the central nervous system.Acta Neurochirurgica Supplement32, 31–53.

    Google Scholar 

  • Berry, M., Rees, L. &Sievers, J. (1986a) Regeneration of axons in the mammalian visual system. InProcesses of Recovery from Neural Trauma: Experimental Brain Research Supplement.13 (edited byGorio, G. M., Gilad, A. &Kreutzberg, G. W.), pp. 18–33. Berlin: Springer-Verlag.

    Google Scholar 

  • Berry, M., Rees, L. &Sievers, J. (1986b) Unequivocal regeneration of rat optic nerve axons within sciatic nerve isografts. InNeural Transplantation and Regeneration (edited byDas, G. D. &Wallace, R. B.), pp. 63–79. New York: Springer-Verlag.

    Google Scholar 

  • Berry, M., Hall, S. M., Rees, E. L., Yiu, P. &Sievers, J. (1987) The role of basal lamina in axon regeneration. In NATO ASI Series. Vol H5Mesenchymal-Epithelial Interactions in Neural Development (edited byWolf, J. R., Sievers, J. &Berry, M.), pp. 361–84. Berlin, Heidelberg: Springer-Verlag.

    Google Scholar 

  • Berry, M., Rees, L., Hall, S., Yiu, P. &Sievers, J. (1988) Optic axons regenerate into sciatic nerve isografts only in the presence of Schwann cells.Brain Research Bulletin 20, 223–31.

    Google Scholar 

  • Bignami, A., Chi, N. H. &Dahl, D. (1981) Centrally cut axons regenerate in peripheral nerve implanted into murine brain: immunofluorescence study with neurofilament and GFA antisera. InPosttraumatic Peripheral Nerve Regeneration: Experimental Basis and Clinical Implications. (edited byGorio, A., Millesi, H. &Migrino, S.), pp. 397–402. New York: Raven Press.

    Google Scholar 

  • Blakemore, W. F. (1984) Limited remyelination of CNS axons by Schwann cells transplanted into the subarachnoid space.Journal of the Neurological Sciences 64, 265–76.

    Google Scholar 

  • Blakemore, W. F. (1976) Invasion of Schwann cells into the spinal cord of the rat following local injections of lysolecithin.Neuropathology and Applied Neurobiology 2, 21–39.

    Google Scholar 

  • Blakemore, W. F. &Patterson, R. C. (1975) Observations on the interaction of Schwann cells and astrocytes following X-irradiation of neonatal spinal cord.Journal of Neurocytology 4, 573–85.

    Google Scholar 

  • Blakemore, W. F., Crang, A. J. &Curtis, R. (1986) The interaction of Schwann cells with CNS axons in regions containing normal astrocytes.Acta Neuropathologica 71, 295–300.

    Google Scholar 

  • Cajal, S., Ramon, Y. (1982)Degeneration and Regeneration in the Nervous System, pp. 589–90. London: Oxford University Press.

    Google Scholar 

  • Carbonetto, S., Evans, D. &Cochard, P. (1987) Nerve fibre growth in culture on tissue substrata from central and peripheral nervous systems.Journal of Neuroscience 7, 610–20.

    Google Scholar 

  • Carden, M. J., Trojanowski, J. Q., Schlaepfer, W. W. &Lee, V. M.-Y. (1987) Two-stage expression of neurofilament polypeptides during rat neurogenesis with early establishment of adult phosphorylation patterns.Journal of Neuroscience 7, 3489–504.

    Google Scholar 

  • Caroni, P. &Schwab, M. (1988) Antibody against myelinassociated inhibitor of neurite growth neutralizes non-permissive substrate properties of CNS white matter.Neuron 1, 85–96.

    Google Scholar 

  • Cohen, J., Burne, J. F., McKinlay, C. &Winter, J. (1987) The role of laminin and the laminin/fibronectin receptor complex in the outgrowth of retinal ganglion cell axons.Developmental Biology 122, 407–418.

    Google Scholar 

  • Dahl, D. &Bignami, A. (1986) Neurofilament phosphorylation in development. A signal of axonal maturation?Experimental Cell Research 162, 220–30.

    Google Scholar 

  • Dahl, D., Bignami, A., Weber, K. &Osborn, M. (1981) Filament proteins in rat optic nerves undergoing Wallerian degeneration: Localisation of vimentin, the fibro-blastic 100-A filament protein, in normal and reactive astrocytes.Experimental Neurology 73, 496–506.

    Google Scholar 

  • Davis, P. K., Carlini, W. G., Ransom, B. R., Black, J. A. &Waxman, S. G. (1987) Carbonic anhydrase activity develops postnatally in rat optic nerve.Developmental Brain Research 31, 291–98.

    Google Scholar 

  • Easter, S. S. (1987) Retinal axons and the basal lamina. In NATO ASI Series, Vol. H5.Mesenchymal-Epithelial Interactions in Neural Development, (edited byWolf, J. R., Sievers, J. &Berry, M.) pp. 385–96. Berlin, Heidelberg: Springer-Verlag.

    Google Scholar 

  • Fallon, J. (1985) Neurite guidance by non-neuronal cells in culture: Preferential outgrowth of peripheral neurites on glia as compared to nonglial cell surface.Journal of Neuroscience 5, 3169–177.

    Google Scholar 

  • Fields, K. L. &McMenamin, P. (1985) Schwann cells cultured from adult rats contain a cytoskeletal protein related to astrocyte filaments.Developmental Brain Research 20, 259–69.

    Google Scholar 

  • Foster, G. A., Dahl, D. &Lee, V. M.-Y. (1987) Temporal and topographic relationships between the phosphorylated and nonphosphorylated epitopes of the 200 kDa neurofilament protein during developmentin vitro.Journal of Neuroscience 7, 2651–663.

    Google Scholar 

  • Gilmore, S. A. (1973) Long term effects of ionising radiation on rat spinal cord: Intramedullary connective tissue formation.American Journal of Anatomy 137, 1–18.

    Google Scholar 

  • Gilmore, S. A. &Duncan, D. (1968) On the presence of peripheral-like neurones and connective tissue within irradiated spinal cord.Anatomical Record 160, 675–90.

    Google Scholar 

  • Gilmore, S. A. &Sims, T. A. (1986) The role of Schwann cells in repair of glial cell deficits in the spinal cord. InNeural Transplantation and Regeneration, (edited byDas, G. D. &Wallace, R. B.), pp. 245–69. Berlin: Springer-Verlag.

    Google Scholar 

  • Gulati, A. K., Reddi, A. H. &Zalewski, A. A. (1983) Changes in the basement zone components during skeletal muscle fiber degeneration and regeneration.Journal of Cell Biology 97, 957–62.

    Google Scholar 

  • Hall, S. M. (1986a) Regeneration in cellular and acellular autogratts in the peripheral nervous system,Neuropthology and Applied Neurobiology 12, 27–46.

    Google Scholar 

  • Hall, S. M. (1986b) The effect of inhibiting Schwann cell mitosis on the re-innervation of acellular autografts in the peripheral nervous system of the mouse.Neuropathology and Applied Neurobiology 12, 401–14.

    Google Scholar 

  • Hall, S. M. &Kent, A. P. (1987) The response of regenerating peripheral neurites to a grafted optic nerve.Journal of Neurocytology 16, 317–31.

    Google Scholar 

  • Haugh, M. C., Probst, A., Ulrich, J., Kahn, J. &Anderton, B. H. (1986) Alzheimer neurofibrillary tangles contain phosphorylated and hidden neurofilament epitopes.Journal of Neurology, Neurosurgery and Psychiatry 49, 1213–220.

    Google Scholar 

  • Hopkins, J. M., Ford-Holevinski, T. S., McCoy, J. P. &Agranoff, B. W. (1985) Laminin and optic nerve re-generation in the goldfish.Journal of Neuroscience 5, 3030–038.

    Google Scholar 

  • Ide, C., Tohyama, K., Yokota, R., Nitatori, T. &Onodera, S. (1983) Schwann cell basal lamina and nerve regeneration.Brain Research 288, 61–75.

    Google Scholar 

  • Jessen, K. R. &Mirsky, R. (1984) Nonmyelin-forming Schwann cells coexpress surface proteins and intermediate filaments not found in myelin-forming cells: a study of Ran-2, A5E3 antigen and glial fibrillary acidic protein.Journal of Neurocytology 13, 923–34.

    Google Scholar 

  • Johnson, A. R., Wigley, C. B., Gregson, N. A., Cohen, J. &Berry, M. (1988) Neither laminin nor prior optic nerve section are essential for the regeneration of adult mammalian retinal ganglion cell axonsin vitro.Journal of Neurocytology 17, 95–104.

    Google Scholar 

  • Keynes, R. (1987) Schwann cells during neural development and regeneration: leaders or followers?Trends in Neurosciences 10, 137–39.

    Google Scholar 

  • Kleitman, N. &Johnson, M. I. (1986) Olfactory bulb neurite extension in culture is age and substrate dependent.Society for Neuroscience Abstracts12, 1112.

    Google Scholar 

  • Kleitman, N., Wood, P., Johnson, M. I. &Bunge, R. P. (1988) Schwann cell surfaces but not extracellular matrix organised by Schwann cells support neurite outgrowth from embryonic rat retina.Journal of Neuroscience 8, 653–63.

    Google Scholar 

  • Latov, N., Nilaver, G., Zimmerman, E. A., Johnson, W. G., Silverman, A., Defebini, R. &Cote, L. (1979) Fibrillary astrocytes proliferate in response to brain injury. A study combining immunoperoxidase technique for glial fibrillary acidic protein and radioautography of tritiated thymidine.Developmental Biology 72, 381–84.

    Google Scholar 

  • Lee, V. M.-Y., Carden, M. J., Schlaepfer, W. W. &Trojanowski, J. Q. (1987) Monoclonal antibodies distinguish several differentially phosphorylated states of the two largest rat neurofilament subunits (NF-H and NF-M) and demonstrate their existence in the normal nervous system of adult rats.Journal of Neuroscience 7, 3474–488.

    Google Scholar 

  • Liesi, P. (1985) Laminin-immunoreactive glia distinguish regenerative adult CNS systems from non-regenerative ones.EMBO Journal 4, 2505–11.

    Google Scholar 

  • Liesi, P., Kaakkola, S., Dahl, D. &Vaheri, A. (1984) Laminin is induced in astrocytes of adult brain by injury.EMBO Journal 3, 683–6.

    Google Scholar 

  • Liotta, L. A., Goldfarb, R. H., Brundag, R., Siegal, G. P., Terranova, V. &Gabrisa, S. (1981) Effect of plasminogen activator (urokinase), plasmin, and thrombin on glycoprotein and collagenous components of basement membrane.Cancer Research 41, 4629–36.

    Google Scholar 

  • Liuzzi, F. J. &Lasek, R. (1987) Astrocytes block axonal regeneration in mammals by activating the physiological stop pathway.Science 237, 642–5.

    Google Scholar 

  • Ludwin, S. K. (1984) Proliferation of mature oligodendrocytes after trauma to the central nervous system.Nature 308, 274–75.

    Google Scholar 

  • Manthorpe, M., Engvall, E., Ruoslahti, E., Longo, F. M., Davis, G. E. &Varon, S. (1983) Laminin promotes neuritic regeneration from cultured peripheral and central neurons.Journal of Cell Biology 97, 1882–90.

    Google Scholar 

  • Mathewson, A. J. &Berry, M. (1985) Observations on the astrocyte response to a cerebral stab wound in adult rats.Brain Research 327, 61–9.

    Google Scholar 

  • Maxwell, W. L., Duance, V. C., Lehto, M., Ashurst, D. E. &Berry, M. (1984) The distribution of types I, III, IV and V collagens in penetrant lesions of the central nervous system of the rat.Histochemical Journal 16, 1219–29.

    Google Scholar 

  • Noakes, P. G. &Bennett, M. R. (1987) Growth of axonsinto developing muscles of the chick forelimb is preceded by cells that stain with Schwann cell antibodies.Journal of Comparative Neurology 259, 330–47.

    Google Scholar 

  • Politis, M. J., Ederle, K. &Spencer, P. S. (1982) Tropism in nerve regeneratingin vivo. Attraction of regenerating axons by diffusible factors derived from cells in distal nerve stump of transected peripheral nerves.Brain Research 253, 1–12.

    Google Scholar 

  • Politis, M. J. &Spencer, P. S. (1986) Regeneration of rat optic axons into peripheral nerve grafts.Experimental Neurology 9, 52–60.

    Google Scholar 

  • Richardson, P. M., Issa, V. M. K. &Shemie, S. (1982) Regeneration and retrograde degeneration of axons in the rat optic nerve.Journal of Neurocytology 11, 949–66.

    Google Scholar 

  • Rogers, S. L., Edson, K. J., Letourneau, P. C. &McLoon, S. C. (1986) Distribution of laminin in the developing peripheral nervous system of the chick.Developmental Biology 113, 429–35.

    Google Scholar 

  • Sanes, J. R. (1985) Laminin for axonal guidance?Nature 315, 714–5.

    Google Scholar 

  • Schnitzer, J., Franke, W. W. &Schachner, M. (1981) Immunocytochemical demonstration of vimentin in astrocytes and ependymal cells of developing and adult mouse nervous system.Journal of Cell Biology 90, 435–47.

    Google Scholar 

  • Skoff, R. P. (1975) The fine structure of pulse labelled (3-H-thymidine) cells in degenerating rat optic nerve.Journal of Comparative Neurology 161, 595–611.

    Google Scholar 

  • Smith, G. V. &Stevenson, J. A. (1987) Schwann cell involvement in nerve graft promoted CNS axon regeneration.Anatomical Record 218, 155A.

    Google Scholar 

  • So, K.-F. &Aguayo, A. J. (1985) Lengthy regrowth of cut axons from ganglion cells after peripheral nerve transplantation into the retina of adult rats.Brain Research 328, 349–54.

    Google Scholar 

  • Steedman, H. F. (1957) Polyester wax. A new ribboning embedding medium for histology.Nature 179, 1345.

    Google Scholar 

  • Stevenson, J. A. (1985) Growth of optic tract axons in nerve grafts in hamsters.Experimental Neurology 87, 446–57.

    Google Scholar 

  • Thanos, S. &Bonhoeffer, F. (1983) Investigation on the development and topographic order of retinotectal axons: Anterograde and retrograde staining of axons and perikarya with rhodaminein vivo.journal of Comparative Neurology 219, 420–31.

    Google Scholar 

  • Tilguer, S. (1968) Die Blutgefasse der Orbita der Ratte. (Rattus norvegicus Berkenhout 1769). I Die Arterien.Anatomischer Anzeiger 122, 403–12.

    Google Scholar 

  • Tomaselli, K. J., Reichardt, L. F. &Bixby, J. L. (1986) Distinct molecular interactions mediate neuronal process outgrowth on non-neuronal cell surfaces and extracellular matrices.Journal of Cell Biology 103, 2659–72.

    Google Scholar 

  • Varon, S. &Williams, L. R. (1986) Nerve regeneration chamber: physical and molecular influences. InProcesses of Recovery from Neural Trauma (edited byGilad, G. M., Gorio, A. &Kreutzberg, G. W.), pp. 309–16. Berlin: Springer-Verlag.

    Google Scholar 

  • Vidal-Sanz, M., Bray, G., Villegas-Perez, M. P., Thanos, S. &Aguayo, A. J. (1987) Axonal regeneration and synapse formation in the superior colliculus by retinal ganglion cells in the adult rat.Journal of Neuroscience 7, 2894–909.

    Google Scholar 

  • Wise, G., Dollery, C. &Henkin, P. (1971).The Retinal Circulation. New York: Harper and Row.

    Google Scholar 

  • Wood, P. M. &Bunge, R. P. (1986) Evidence that axons are mitogenic for oligodendrocytes isolated from adult animals.Nature 320, 756–58.

    Google Scholar 

  • Yen, S.-H. &Fields, K. L. (1981) Antibodies to neurofilament, glial filament and fibroblast intermediate filament proteins bind to different cell types of the nervous system.Journal of Cell Biology 88, 115–26.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berry, M., Hall, S., Follows, R. et al. Response of axons and glia at the site of anastomosis between the optic nerve and cellular or acellular sciatic nerve grafts. J Neurocytol 17, 727–744 (1988). https://doi.org/10.1007/BF01216702

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01216702

Keywords

Navigation