Skip to main content
Log in

Identification of organic compounds by microscopy and X-ray diffractometry

  • Published:
Microchimica Acta Aims and scope Submit manuscript

Summary

Primary and secondary crystallographic constants can be utilized conveniently for identifications of crystalline organic and inorganic materials by microscopy and X-ray diffractometry. Several specific properties can be measured under the petrographical microscope, including optic axial angle, character, dispersion, and in addition, refractive index directions can be established. The “d” spacings and their intensities as determined with the X-ray diffractometer serve to identify crystalline materials. The two instruments should be considered as supplementary tools for identifying crystals.

Both instruments supply a means for identification and semiquantitative analysis of mixed crystal systems. Data are presented for the systems: acetic-propionic p-bromoanilides and acet-propion-2.4-dinitro-phenylhydrazones.

Zusammenfassung

Primäre und sekundäre kristallographische Konstanten können zur Identifizierung kristallisierter organischer und anorganischer Stoffe auf mikroskopischem Wege und durch Röntgendiffraktometrie gut herangezogen werden. Einzelne spezifische Eigenschaften können unter dem petrographischen Mikroskop gemessen werden, so der optische Achsenwinkel, der Charakter, die Dispersion. Außerdem kann man Angaben über den Brechungsindex erhalten. Die mit dem Röntgendiffraktometer bestimmten Netzebenenabstände „d“ und deren Intensitäten dienen zur Identifizierung kristallisierter Stoffe. Die beiden Instrumente sind als Hilfsmittel zur Erkennung von Kristallen anzusehen.

Sie bieten die Möglichkeit zur Identifizierung und halbquantitativen Analyse von Mischkristallsystemen. Daten für die Systeme Essigsäure-Propionsäure-p-Bromanilid und Acetaldehyd-Propionaldehyd-2,4-Dinitrophenylhydrazon werden mitgeteilt.

Résumé

Les constantes cristallographiques primaires et secondaires sont utilisables pour l'identification de composés cristallins organiques et minéraux par microscopie et diffractométrie de rayons X. Il est possible de mesurer diverses propriétés spécifiques sous le microscope pétrographique, savoir: l'angle des axes optiques, le caractère et la dispersion optiques. Il est en outre possible de déterminer les directions des indices de réfraction primaires. Les espacements «d» et leurs intensités déterminés par le diffractomètre à rayons X permettent d'identifier les substances cristallines. Les deux instruments doivent être considérés comme complémentaires pour l'identification de cristaux. Chacun d'entre eux fournit un moyen d'identification et d'analyse semi quantitative des systèmes de cristaux mixtes. On rend compte de résultats obtenus pour les systèmes: p-bromoanilides acétique et propionique ainsi que 2, 4-dinitro phénylhydrazones de l'acétaldéhyde et du propionaldéhyde.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. M. Chamot andC. W. Mason, Handbook of Chemical Microscopy, 2nd ed., Vol. II. New York: Wiley. 1940.

    Google Scholar 

  2. L. Kofler andA. Kofler, Thermo-Mikro-Methoden zur Kennzeichnung organischer Stoffe und Stoffgemische. Innsbruck: Universitätsverlag Wagner. 1954.

    Google Scholar 

  3. M. Brandstätter, Mikrochem.36/37, 291 (1951).

    Google Scholar 

  4. J. Mitchell,.Jr., Analyt. Chemistry21, 448 (1949).

    Google Scholar 

  5. N. H. Hartshorne andA. Stuart, Crystals and the Polarizing Microscope. London: Edward Arnold Co. 1934.

    Google Scholar 

  6. A. F. Rogers andP. F. Kerr, Thin-Section Mineralogy. New York: McGraw-Hill Book Co. 1933.

    Google Scholar 

  7. E. E. Jelley, J. Royal Microscop. Soc.52, 93 (1942).

    Google Scholar 

  8. A. Johannson, Manual of Petrographic Methods, 2nd ed. New York: McGraw-Hill Book Co. 1918.

    Google Scholar 

  9. T. R. P. Gibb, Optical Methods of Chemical Analysis. New York: McGraw-Hill Book Co. 1942.

    Google Scholar 

  10. H. Rosenbusch andE. A. Wülfing, Mikroskopische Physiographie, 5th ed., Vol. I, Pt. 1, No. 1. Stuttgart: E. Schweizerbartsche Verlagsbuchhandlung. 1922.

    Google Scholar 

  11. W. M. D. Bryant, J. Amer. Chem. Soc.54, 3758 (1932);55, 3201 (1933);58, 2335 (1936);60, 2814 (1938).

    Google Scholar 

  12. L. I. Braddock, K. T. Garlow, L. I. Grimm, A. F. Kirkpatrick, S. W. Pease, A. J. Pollard, E. F. Price, T. L. Reissmann, H. A. Rose, andM.L. Willard, Analyt. Chemistry25, 301 (1953).

    Google Scholar 

  13. W. M. D. Bryant, J. Amer. Chem. Soc.60, 1394 (1938).

    Google Scholar 

  14. W. M. D. Bryant andJ. Mitchell,.Jr., J. Amer. Chem. Soc.60, 2748 (1930).

    Google Scholar 

  15. J. Mitchell,.Jr. andW. M. D. Bryant, J. Amer. Chem. Soc.65, 128 (1943).

    Google Scholar 

  16. A. N. Winchell, The Optical Properties of Organic Compounds, 2nd ed. New York: Academic Press, 1954.

    Google Scholar 

  17. W. C. MoCrone and co-workers, Analyt. Chemistry, monthly reports.

  18. H. P. Klug andL. E. Alexander, X-Ray Diffraction Procedures. New York: Wiley. 1954.

    Google Scholar 

  19. J. M. Bijvoet, N. H. Kolkmeyer andC. H. MacGillavry, X-Ray Analysis of Crystals. New York: Interscience Publishers. 1951.

    Google Scholar 

  20. J. D. Hanawalt andH. W. Rinn, Ind. Eng. Chem., Analyt. Ed.8, 244 (1936).

    Google Scholar 

  21. J. D. Hanawalt, H. W. Rinn andL. K. Frevel, Ind. Eng. Chem., Analyt. Ed.10, 457 (1938).

    Google Scholar 

  22. L. K. Frevel, Ind. Eng. Chem., Analyt. Ed.16, 209 (1944).

    Google Scholar 

  23. F. B. Slagle andE. Ott, J. Amer. Chem. Soc.55, 4404 (1933).

    Google Scholar 

  24. K. Hess andH. Kiessig, Chem. Ber.81, 327 (1948).

    Google Scholar 

  25. F. W. Matthews, G. G. Warren andJ. H. Michell, Analyt. Chemistry22, 514 (1950).

    Google Scholar 

  26. F. W. Matthews andJ. H. Michell, Ind. Eng. Chem., Analyt. Ed.18, 662 (1946).

    Google Scholar 

  27. F. O. Bell, Biochemic. J.35, 312 (1941).

    Google Scholar 

  28. G. L. Clark, W. I. Kaye andT. D. Parks, Ind. Eng. Chem., Analyt. Ed.18, 310 (1946).

    Google Scholar 

  29. J. J. de Lange andJ. P. W. Houtman, Rec. trav. chim. Pays-Bas65, 891 (1946).

    Google Scholar 

  30. T. Malkin andT. C. Tranter, J. Chem. Soc. London1951, 1178.

  31. B. E. Gordon, F. Wopat, Jr.,H. D. Burnham, andL. C. Jones, Jr., Analyt. Chemistry23, 1754 (1951).

    Google Scholar 

  32. F. W. Neuman andC. W. Gould, Analyt. Chemistry25, 751 (1953).

    Google Scholar 

  33. J. B. McKinley, J. E. Nickels andS. S. Sidhu, Ind. Eng. Chem., Analyt. Ed.16, 304 (1944).

    Google Scholar 

  34. G. G. Warren andF. W. Matthews, Analyt. Chemistry26, 1985 (1954).

    Google Scholar 

  35. L. L. Merritt, .Jr., H. B. Cutter, H. R. Golden, andE. Lanterman, Analyt. Chemistry22, 519 (1950).

    Google Scholar 

  36. C. W. Gould andS. T. Gross, Analyt. Chemistry25, 749 (1953).

    Google Scholar 

  37. D. W. Moore andL. A. Burkardt, Analyt. Chemistry26, 1917 (1954).

    Google Scholar 

  38. H. S. Kaufman andI. Fankuchen, Analyt. Chemistry26, 31 (1954).

    Google Scholar 

  39. P. W. Robertson, J. Chem. Soc. London115, 1210 (1919).

    Google Scholar 

  40. M. Kuehn andS. M. McElvain, J. Amer. Chem. Soc.53, 1173 (1931).

    Google Scholar 

  41. O. L. Brady, J. Chem. Soc. London1931, 756.

  42. M. Brandstätter, Mikrochem.31, 33 (1944).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitchell, J., Ryland, A.L. Identification of organic compounds by microscopy and X-ray diffractometry. Mikrochim Acta 44, 422–436 (1956). https://doi.org/10.1007/BF01216628

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01216628

Keywords

Navigation