Abstract
A probability measurep on the set μ of matchings in a graph (or, more generally 2-bounded hypergraph) Γ ishard-core if for some λ: Γ→[0,∞), the probabilityp(M) ofM∈μ is proportional to\(\prod\nolimits_{A_ \in M} {\lambda (A)}\). We show that such distributions enjoy substantial approximate stochastic independence properties. This is based on showing that, withM chosen according to the hard-core distributionp, MP (Γ) the matching polytope of Γ, and σ>0, if the vector ofmarginals, (Pr(A∈M):A an edge of Γ), is in (1−σ) MP (Γ), then the weights λ(A) are bounded by someA(σ). This eventually implies, for example, that under the same assumption, with σ fixed,\(\frac{{\Pr (A,B \in M)}}{{\Pr (A \in M)\Pr (B \in M)}} \to 1\) as the distance betweenA, B∈Γ tends to infinity.
Thought to be of independent interest, our results have already been applied in the resolutions of several questions involving asymptotic behaviour of graphs and hypergraphs (see [14, 16], [11]−[13]).
This is a preview of subscription content, access via your institution.
References
- [1]
N. Alon andJ. Spencer:The Probabilistic Method, Wiley, New York, 1992.
- [2]
J. van den Berg andJ. E. Steif: Percolation and the hard-core lattice gas model,Stochastic Process. Appl.,49 (1994), 179–197.
- [3]
C. Berge:Hypergraphs: Combinatorics of Finite Sets, North-Holland, Amsterdam, 1989.
- [4]
B. Bollobás:Extremal Graph Theory, Academic Press, London, 1978.
- [5]
J. Edmonds: Maximum matching and a polyhedron with 0,1-vertices,J. Res. Nat. Bur. Standards (B),69 (1965), 125–130.
- [6]
Z. Füredi: Matchings and covers in hypergraphs,Graphs Combin.,4 (1988), 115–206.
- [7]
C. D. Godsil andI. Gutman: On the theory of the matching polynomial,J. Graph Theory,5 (1981), 137–144.
- [8]
C. D. Godsil:Algebraic Combinatorics, Chapman and Hall, New York, 1993.
- [9]
O. J. Heilmann andE. H. Lieb: Monomers and dimers,Phys. Rev. Letters,24 (1970), 1412–1414.
- [10]
O. J. Heilmann andE. H. Lieb: Theory of monomer-dimer systems,Commun. Math. Phys.,25 (1972), 190–232.
- [11]
J. Kahn: Asymptotics of the chromatic index for multigraphs,J. Combin. Theory Ser. B,68 (1996), 233–254.
- [12]
J. Kahn: Asymptotics of the list-chromatic index for multigraphs, submitted.
- [13]
J. Kahn: A normal law for matchings, submitted.
- [14]
J. Kahn andP. M. Kayll: Fractional v. integral covers in hypergraphs of bounded edge size,J. Combin. Theory Ser. A,78 (1997), 199–235.
- [15]
J. Kahn andJ.-H. Kim: Random matchings in regular graphs,Combinatorica, to appear.
- [16]
P. M. Kayll:Asymptotically Good Covers in Hypergraphs, Dissertation, Rutgers University, New Brunswick, NJ, 1994.
- [17]
P. M. Kayll: Asymptotically good covers in hypergraphs,Diss. Summ. Math.,1 (1996), 9–16.
- [18]
P. M. Kayll: “Normal” distributions on matchings in a multigraph: overview with applications,Congr. Numer.,107 (1995), 179–191.
- [19]
H. Kunz: Location of the zeros of the partition function for some classical lattice systems,Phys. Lett.,32A (1970), 311–312.
- [20]
C. W. Lee: Some recent results on convex polytopes,Contemporary Mathematics,114 (1990), 3–19.
- [21]
C. W. Lee: Convex polytopes, the moment map, and canonical convex combinations, manuscript, 1994.
- [22]
G. M. Louth:Stochastic Networks: Complexity, Dependence and Routing, Dissertation, Cambridge University, 1990.
- [23]
L. Lovász andM. D. Plummer:Matching Theory, North-Holland, New York, 1986.
- [24]
J. R. Munkres:Elements of Algebraic Topology, Benjamin/Cummings, Menlo Park, 1984.
- [25]
Y. Rabinovich, A. Sinclair andA. Wigderson: Quadratic Dynamical Systems (Preliminary Version), in:Proc. 33rd IEEE Symposium on Foundations of Computer Science, pp. 304–313, 1992.
- [26]
A. Schrijver:Theory of Linear and Integer Programming, Wiley, New York, 1986.
- [27]
J. Spencer:Ten Lectures on the Probabilistic Method, SIAM, Philadelphia, 1993.
Author information
Affiliations
Additional information
Supported in part by NSF
This work forms part of the author's doctoral dissertation [16]; see also [17]. The author gratefully acknowledges NSERC for partial support in the form of a 1967 Science and Engineering Scholarship.
Rights and permissions
About this article
Cite this article
Kahn, J., Kayll, P.M. On the stochastic independence properties of hard-core distributions. Combinatorica 17, 369–391 (1997). https://doi.org/10.1007/BF01215919
Received:
Issue Date:
Mathematics Subject Classification (1991)
- 05C70
- 05C65
- 60C05
- 52B12
- 82B20