The optimal path-matching problem

Abstract

We describe a common generalization of the weighted matching problem and the weighted matroid intersection problem. In this context we establish common generalizations of the main results on those two problems—polynomial-time solvability, min-max theorems, and totally dual integral polyhedral descriptions. New application of these results include a strongly polynomial separation algorithm for the convex hull of matchable sets of a graph, and a polynomial-time algorithm to compute the rank of a certain matrix of indeterminates.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    E. Balas andW. R. Pulleyblank: The perfectly matchable subgraph polyherron of an arbitrary graph,Combinatorica,9 (1989), 495–516.

    Google Scholar 

  2. [2]

    W. H. Cunningham: Testing membership in matroid polyhedra,J. Combinatorial Theory Ser. B,36 (1984), 161–188.

    Google Scholar 

  3. [3]

    W. H. Cunningham andJ. Green-Krótki: A separation alogirthm for the matchable set polytope,Math. Programming,65 (1994), 139–150.

    Google Scholar 

  4. [4]

    W. H. Cunningham andJ. F. Geelen: The optimal path-matching problem,Proceedings of thirty-seventh Symposium on the Foundations of Computing, IEEE Computer Society Press, (1996), 78–85.

  5. [5]

    W. H. Cunningham andA. B. Marsh III A primal algorithm for optimum matching,Math. Programming Stud.,8 (1978), 50–72.

    Google Scholar 

  6. [6]

    J. Edmonds: Paths, trees and flowers,Canada. J. Math.,17 (1965), 449–467.

    Google Scholar 

  7. [7]

    J. Edmonds: Maximum matching and a polyhedron with 0, 1 vertices,J. Res. Nat. Bur. Standards Sect. B,69 (1965), 125–130.

    Google Scholar 

  8. [8]

    J. Edmonds: Systems of distinct representatives and linear algebra,J. Res. Nat. Bur. Standards Sect. B,71 (1967), 241–245.

    Google Scholar 

  9. [9]

    J. Edmonds: Submodular functions, matroids and certain polyhedra, in: R.K. Guy, et al. (eds.)Combinatorial Structures and their Applications, Gordon and Breach, New York, 1970, 69–87.

    Google Scholar 

  10. [10]

    J. Edmons andD. R. Fulkerson: Transversals and matroid partition,J. Res. Nat. Bur. Standards Sect. B,69 (1965), 147–153.

    Google Scholar 

  11. [11]

    J. F. Geelen:Matroids, Matchings, and Unimodular Matrices, doctoral thesis, University of Waterloo, Waterloo, Canada, 1995.

    Google Scholar 

  12. [12]

    J. Green-Krótki:Matching Polyhedra, Master's thesis, Carleton University, Ottawa, Canada, 1980.

    Google Scholar 

  13. [13]

    M. Grötschel, L. Lovász, andA. Schrijver: The ellipsoid method and its consequences in combinatorial optimization,Combinatorica 1 (1981), 169–197.

    Google Scholar 

  14. [14]

    L. Lovász: Private communication, 1992.

  15. [15]

    L. Lovász andM. D. Plummer:Matching Theory, North-Holland, Amsterdam, 1986.

    Google Scholar 

  16. [16]

    M. W. Padberg andM. R. Rao: Odd minimum cut-sets andb-matchings,Math. Oper. Res.,7 (1982), 67–80.

    Google Scholar 

  17. [17]

    A. Schrijver: Short proofs on the matching polyhedron,J. Combinatorial Theory Ser. B,34 (1983), 104–108.

    Google Scholar 

  18. [18]

    A. Schrijver:Theory of Linear and Integer Programming, Wiley, New York, 1986.

    Google Scholar 

  19. [19]

    W. T. Tutte: The factorization of linear graphs,J. London Math. Soc.,22 (1947), 107–111.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cunningham, W.H., Geelen, J.F. The optimal path-matching problem. Combinatorica 17, 315–337 (1997). https://doi.org/10.1007/BF01215915

Download citation

Mathematics Subject Classification (1991)

  • 05C70
  • 05B35
  • 90C27
  • 68Q25