On the number of nowhere zero points in linear mappings


LetA be a nonsingularn byn matrix over the finite fieldGF q ,k=⌊n/2⌋,q=p a,a≥1, wherep is prime. LetP(A,q) denote the number of vectorsx in (GF q )n such that bothx andAx have no zero component. We prove that forn≥2, and\(q > 2\left( {\begin{array}{*{20}c} {2n} \\ 3 \\ \end{array} } \right)\),P(A,q)≥[(q−1)(q−3)]k(q−2)n−2k and describe all matricesA for which the equality holds. We also prove that the result conjectured in [1], namely thatP(A,q)≥1, is true for allq≥n+2≥3 orq≥n+1≥4.

This is a preview of subscription content, access via your institution.


  1. [1]

    N. Alon, andM. Tarsi: A nowhere zero point in linear mappings,Combinatorica 9(4) (1989), 393–395.

    Google Scholar 

  2. [2]

    M. Fujiwara: Über die obere Schranke des absoluten Betrages der Wurzeln einer algebraischen Gleichung,Tôhoku Math. J. 10 (1916), 167–171.

    Google Scholar 

  3. [3]

    G.-C. Rota: On the Foundations of Combinatorial Theory I: Theory of Möbius Functions,Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2, 340–368, 1964.

    Google Scholar 

  4. [4]

    H. S. Wilf:Mathematics for the Physical Sciences (Wiley, New York, 1978).

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baker, R.D., Bonin, J., Lazebnik, F. et al. On the number of nowhere zero points in linear mappings. Combinatorica 14, 149–157 (1994). https://doi.org/10.1007/BF01215347

Download citation

AMS subject classification code (1991)

  • 06 C 10
  • 15 A 06
  • 11 T 99