Skip to main content
Log in

Non-commutative Banach function spaces

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.


  • [CR] Chong, K.M., Rice, N.M.: Equimeasurable rearrangements of functions. Queen's Papers in Pure and Applied Mathematics, no. 28, Queen's University, Kingston (1971)

    Google Scholar 

  • [D] Dixmier, J.: Von Neumann Algebras. Mathematical Libary, vol. 27. Amsterdam: North Holland 1981

    Google Scholar 

  • [DP] Dodds, P.G., Pagter, B. de: Non-commutative Banach function spaces and their duals, Semester Bericht Functionanalysis, Tübingen, Wintersemester, 1988

  • [F] Fack, T.: Sur la notion de valeur caractéristique. J. Oper. Theory7, 307–333 (1982)

    Google Scholar 

  • [FK] Fack, T., Kosaki, H.: Generalizeds-numbers of τ-measurable operators. Pac. J. Math.123, 269–300 (1986)

    Google Scholar 

  • [GK] Gohberg, I.C., Krein, M.G.: Introduction to the theory of linear non-selfadjoint operators, Translations of Mathematical Monographs, vol. 18, AMS (1969)

  • [G] Grothendieck, A.: Réarrangements de fonctions et inégalités de convexité dans les algèbres de von Neumann munies d'une trace, Séminaire Bourbaki (1955), 113-01-113-13

  • [HN] Hiai, F., Nakamura, Y.: Majorizations for generalizeds-numbers in semifinite von Neumann algebras. Math. Z.195, 17–27 (1987)

    Google Scholar 

  • [K] Kosaki, H.: Non-commutative Lorentz spaces associated with a semi-finite von Neumann algebra and applications. Proc. Jap. Acad., Ser. A57, 303–306 (1981)

    Google Scholar 

  • [KPS] Krein, S.G., Petunin, Ju.I., Semenov, E.M.: Interpolation of linear operators, Translations of Mathematical Monographs, vol. 54, AMS (1982)

  • [KR] Kadison, R.V., Ringrose, J.R.: Fundamentals of the theory of operator algebras, vol. I. New York: Academic Press 1983

    Google Scholar 

  • [L] Luxemburg, W.A.J.: Rearrangement invariant Banach function spaces, Queen's Papers in Pure and Applied Mathematics, no. 10, 83–144 (1967)

    Google Scholar 

  • [LS] Lorentz, G.G., Shimogaki, T.: Interpolation theorems for operators in function spaces. J. Funct. Anal.2, 31–51 (1968)

    Google Scholar 

  • [M] Markus, A.S.: The eigen- and singular values of the sum and product of linear operators. Russ. Math. Surv.19, 91–120 (1964)

    Google Scholar 

  • [N] Nelson, E.: Notes on non-commutative integration. J. Funct. Anal.15, 103–116 (1974)

    Google Scholar 

  • [P] Petz, D.: Spectral scale of self-adjoint operators and trace inequalities. J. Math. Anal. Appl.109, 74–82 (1985)

    Google Scholar 

  • [T] Terp, M.:L p-spaces associated with von Neumann algebras, Notes, Copenhagen Univ. (1981)

  • [Y1] Yeadon, F.J.: Non-commutativeL p>-spaces. Math. Proc. Camb. Philos. Soc.77, 91–102 (1975)

    Google Scholar 

  • [Y2] Yeadon, F.J.: Ergodic theorems for semifinite von Neumann algebras: II, Math. Proc. Camb. Philos. Soc.88, 135–147 (1980)

    Google Scholar 

  • [Z1] Zaanen, A.C.: Integration. Amsterdam: North-Holland 1967

    Google Scholar 

  • [Z2] Zaanen, A.C.: Riesz spaces II. Amsterdam: North-Holland 1983

    Google Scholar 

Download references

Author information

Authors and Affiliations


Additional information

Dedicated to A.C. Zaanen on the occasion of his 75th birthday

Supported by A.R.G.S.

Supported by A.R.G.S. and by the Netherlands Organization for Scientific Research (NWO)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dodds, P.G., Dodds, T.K.Y. & de Pagter, B. Non-commutative Banach function spaces. Math Z 201, 583–597 (1989).

Download citation

  • Received:

  • Issue Date:

  • DOI: