Skip to main content
Log in

Eigenvalue comparison theorems and its geometric applications

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Berger, M., Gauduchon, P., Mazet, E.: Le spectre d'une variété Riemannienne. Lecture Notes in Mathematics 194. Berlin-Heidelberg-New York: Springer 1971

    Google Scholar 

  2. Bishop, R., Crittenden, R.: Geometry of Manifolds. New York-London: Academic Press 1964

    Google Scholar 

  3. Chavel, I., Feldman, E.: The first eigenvalue of the Laplacian on manifolds of non-negative curvature. CUNY preprint

  4. Cheeger, J.: The relation between the Laplacian and the diameter for manifolds of non-negative curvature. Arch. der Math.19, 558–560 (1968)

    Google Scholar 

  5. Cheng, S. Y.: Eigenvalue and eigenfunctions of the Laplacian. To appear in the Proceedings of the Symposium on Differential Geometry. (Stanford University, 1973)

  6. Hobson, E.W.: Spherical and Ellipsoidal Harmonics. New York: Chelsea 1955

    Google Scholar 

  7. Klingenberg, W.: Contribution to Riemannian geometry in the large. Ann. of Math., II. Ser.69, 654–666 (1959)

    Google Scholar 

  8. Mazet, E.: Une majoration de λ1 du type de Cheeger. C.r. Acad. Sci., Paris, Sér. A,277, 171–174 (1973)

    Google Scholar 

  9. McKean, H.P. Jr.: An upper bound to the spectrum on a manifold of negative curvature. J. diff. Geometry4, 359–366 (1970)

    Google Scholar 

  10. Payne, L.E.: Isoperimetric inequalities and their applications. SIAM Review9, 453–488 (1967)

    Google Scholar 

  11. Watson, G.N.: A treatise on the theory of Bessel functions. Cambridge: Cambridge University Press 1944; New York: MacMillan 1944

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, SY. Eigenvalue comparison theorems and its geometric applications. Math Z 143, 289–297 (1975). https://doi.org/10.1007/BF01214381

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01214381

Keywords

Navigation