Skip to main content

Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima

Abstract

In this paper we seek to summarize the current knowledge about numerical instabilities such as checkerboards, mesh-dependence and local minima occurring in applications of the topology optimization method. The checkerboard problem refers to the formation of regions of alternating solid and void elements ordered in a checkerboard-like fashion. The mesh-dependence problem refers to obtaining qualitatively different solutions for different mesh-sizes or discretizations. Local minima refers to the problem of obtaining different solutions to the same discretized problem when choosing different algorithmic parameters. We review the current knowledge on why and when these problems appear, and we list the methods with which they can be avoided and discuss their advantages and disadvantages.

This is a preview of subscription content, access via your institution.

References

  1. Allaire, G.; Francfort, G.A. 1993: A numerical algorithm for topology and shape optimization. In: Bendsøe, M.P.; Mota Soares, C.A. (eds.)Topology design of structures, pp. 239–248. Dordrecht: Kluwer

    Google Scholar 

  2. Allaire, G.; Kohn, R.V. 1993: Topology optimization and optimal shape design using homogenization.In: Bendsøe, M.P.; Mota Soares, C.A. (eds)Topology design of structures, pp. 207–218. Dordrecht: Kluwer

    Google Scholar 

  3. Ambrosio, L.; Buttazzo, G. 1993: An optimal design problem with perimeter penalization.Calc. Var. 1, 55–69

    Google Scholar 

  4. Beckers, M. 1996: Optimisation topologique de structures continues en variable discretes.Technical Report OF-38, LTAS, University of Liège

  5. Beckers, M. 1997a: Methodes du perimetre et des filtres pour l'optimisation topologique en variable discretes.Technical Report OF-45, LTAS, University of Liège

  6. Beckers, M. 1997b: Optimisation topologique de structures tridimensionelles en variable discretes.Technical Report OF-44, LTAS, University of Liège

  7. Bendsøe, M.P. 1989: Optimal shape design as a material distribution problem.Struct. Optim. 1, 193–202

    Google Scholar 

  8. Bendsøe, M.P. 1995:Optimization of structural topology, shape and material. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  9. Bendsøe, M.P.; Guedes, J.M.; Haber, R.B.; Pedersen, P.; Taylor, J.E. 1994: An analytical model to predict optimal material properties in the context of optimal structural design.Trans. ASME, J. Appl. Mech. 61, 930–937

    Google Scholar 

  10. Bendsøe, M.P.; Kikuchi, N. 1988: Generating optimal topologies in optimal design using a homogenization method.Comp. Meth. Appl. Mech. Engng. 71, 197–224

    Google Scholar 

  11. Bendsøe, M.P.; Kikuchi, N.; Diaz, A.R. 1993: Topology and generalized layout optimization of elastic structures. In: Bendsøe, M.P.; Mota Soares, C.A. (eds.)Topology design of structures, pp. 159–205. Dordrecht: Kluwer

    Google Scholar 

  12. Chambolle, A. 1995: Image segmentation by variational methods: Mumford and shah functional and the discrete approximations.SIAM J. Appl. Math. 55, 827–863

    Google Scholar 

  13. Díaz, A.R.; Sigmund, O., 1995: Checkerboard patterns in layout optimization.Struct. Optim. 10, 40–45

    Google Scholar 

  14. Duysinx, P. 1997: Layout optimization: A mathematical programming approach. (Submitted). Also:DCAMM Report No. 540, Technical University of Denmark

  15. Guedes, J.M.; Taylor, J.E. 1997: On the prediction of material properties and topology for optimal continuum structures.Struct. Optim. 14, 183–192

    Google Scholar 

  16. Haber, R.B.; Bendsøe, M.P.; Jog, C. 1996: A new approach to variable-topology shape design using a constraint on the perimeter.Struct. Optim. 11, 1–12

    Google Scholar 

  17. Jog, C.S.; Haber, R.B. 1996: Stability of finite element models for distributed-parameter optimization and topology design.Comp. Meth. Appl. Mech. Engng. 130, 203–226

    Google Scholar 

  18. Johnson, C.; Pitkäranta, J. 1982: Analysis of some mixed finite element methods related to reduced integration.Mathematics of Computations 38, 375–400

    Google Scholar 

  19. Leblond, J.B.; Perrin, G.; Deveaux, J. 1994: Bifurcation effects in ductile metals with damage delocalization.J. Appl. Mech. 61, 236–242

    Google Scholar 

  20. Mullender, M.G.; Huiskes, R.; Weihnans, H. 1994: A physiological approach to the simulation of bone remodelling as a self-organizational controll process.J. Biomech. 11, 1389–1394

    Google Scholar 

  21. Niordson, F.I. 1983: Optimal design of plates with a constraint on the slope of the thickness function.Int. J. Solids & Struct. 19, 141–151

    Google Scholar 

  22. Petersson, J. 1997a: A finite element analysis of optimal variable thickness sheets. (Submitted). Also:Mat. Report No. 1996-4, December 1996, Technical University of Denmark

  23. Petersson, J. 1997b: Some convergence results in perimeter-controlled topology optimization. (Submitted). Also:Report LiTH-IKP-R-995, Linköping University, Sweden

    Google Scholar 

  24. Petersson, J.; Sigmund, O. 1998: Slope constrained topology optimization.Int. J. Numer. Meth. Engng. 41, 1417–1434

    Google Scholar 

  25. Sigmund, O. 1994:Design of material structures using topology optimization. Ph.D. Thesis, Department of Solid Mechanics, Technical University of Denmark

  26. Sigmund, O. 1997: On the design of compliant mechanisms using topology optimization.Mech. Struct. Mach. 25, 495–526

    Google Scholar 

  27. Sigmund, O.; Torquato, S. 1997: Design of materials with extreme thermal expansion using a three-phase topology optimization method.J. Mech. Phys. Solids 45, 1037–1067

    Google Scholar 

  28. Sigmund, O.; Torquato, S.; Aksay, I.A. 1998: On the design of 1–3 piezocomposites using topology optimization.J. Mat. Res. 13 (4)

  29. Zhou, M.; Rozvany, G.I.N. 1991: The COC algorithm, Part II: Topological, geometry and generalized shape optimization,Comp. Meth. Appl. Mech. Engng. 89, 197–224

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sigmund, O., Petersson, J. Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Structural Optimization 16, 68–75 (1998). https://doi.org/10.1007/BF01214002

Download citation

Keywords

  • Civil Engineer
  • Local Minimum
  • Current Knowledge
  • Topology Optimization
  • Numerical Instability