Skip to main content
Log in

The low density limit for anN-level system interacting with a free bose or fermi gas

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

It is proved that the reduced dynamics of anN-level system coupled to a free quantum gas converges to a quantum dynamical semigroup in the low density limit. The proof uses a perturbation series of the quantum BBGKY-hierarchy, and the analysis of this series is based on scattering theory. The limiting semigroup contains the full scattering cross section, but it does not depend on the statistics of the reservoir. The dynamics of the semigroup is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grad, H.: Principles of the kinetic theory of gases. In: Handbuch der Physik, Vol. 12, Flügge, S. (ed.), Berlin, Heidelberg, New York: Springer 1958

    Google Scholar 

  2. Lanford, O. E.: Time evolution of large classical systems. In: Dynamical Systems, Theory and Applications, Moser, J. (ed.), Berlin, Heidelberg, New York: Springer 1975

    Google Scholar 

  3. Lanford, O. E.: On a derivation of the Boltzmann equation. Astérisque40, Soc. Math. de France (1976)

  4. King, F.: Ph.D. Thesis, University of California, Berkeley (1975)

    Google Scholar 

  5. Spohn, H.: The Lorentz process converges to a random flight process. Commun. Math. Phys.60, 277–290 (1978)

    Google Scholar 

  6. Lebowitz, J. L., Spohn, H.: Steady state self-diffusion at low density. J. Stat. Phys.29, 39–55 (1982)

    Google Scholar 

  7. Boldrighini, C., Bunimovich, L. A., Sinai, Ya. G.: On the Boltzmann equation for the Lorentz gas. Camerino University 1983 (Preprint)

  8. Uehling, E. A., Uhlenbeck, G. E.: Transport phenomena in Einstein-Bose and Fermi-Dirac gases. I. Phys. Rev.43, 552–561 (1933)

    Google Scholar 

  9. Mori, H., Ono, S.: The quantum-statistical theory of transport phenomena, I. Prog. Theor. Phys.8, 327–340 (1952); Mori, H.: The quantum-statistical theory of transport phenomena, II. Prog. Thoer. Phys.9, 473–491 (1953) Ono, S.: The quantum-statistical theory of transport phenomena, III. Prog. Theor. Phys.12, 113–128 (1954)

    Google Scholar 

  10. Ross, J., Kirkwood, J. G.: The statistical-mechanical theory of transport processes. VIII. Quantum theory of transport in gases. J. Chem. Phys.22, 1094–1103 (1954)

    Google Scholar 

  11. Sáenz, A. W.: Transport equation in quantum statistics for spinless molecules. Phys. Rev.105, 546–558 (1957)

    Google Scholar 

  12. Mori, H., Ross, J.: Transport equation in quantum gases. Phys. Rev.109, 1877–1882 (1958)

    Google Scholar 

  13. Lewis, R. M.: Quantum statistics and the Boltzmann equation. J. Math. Phys.3, 1229–1246 (1962)

    Google Scholar 

  14. Hoffman, D. K., Mueller, J. J., Curtiss, C. F.: Quantum-mechanical Boltzmann equation. J. Chem. Phys.43, 2878–2884 (1965)

    Google Scholar 

  15. Kadanoff, L. P., Baym, G.: Quantum statistical mechanics. New York: Benjamin 1962

    Google Scholar 

  16. Prugovečki, E.: A quantum-mechanical Boltzmann equation for one-particleΓ s -distribution functions. Physica91A, 229–248 (1978)

    Google Scholar 

  17. Wittwer, P.: Zur Quantenmechanik der Boltzmanngleichung. Diplom Thesis, ETH Zürich (1980)

  18. Palmer, P. F.: The rigorous theory of infinite quantum mechanical systems—Master equations and the dynamics of open systems. D. Phil. Thesis, Oxford University (1976)

  19. Davies, E. B.: Markovian master equations. Commun. Math. Phys.39, 91–110 (1974)

    Google Scholar 

  20. Davies, E. B.: Markovian master equations II. Math. Ann.219, 147–158 (1976)

    Google Scholar 

  21. Gorini, V., Kossakowski, A.:N-level system in contact with a singular reservoir. J. Math. Phys.17, 1298–1305 (1976)

    Google Scholar 

  22. Frigerio, A., Gorini, V.:N-level system in contact with a singular reservoir. II. J. Math. Phys.17, 2123–2127 (1976)

    Google Scholar 

  23. Hugenholtz, N. M.: Derivation of the Boltzmann equation for a Fermi gas, J. Stat. Phys.32, 231–254 (1983)

    Google Scholar 

  24. Reed, M., Simon, B.: Methods of modern mathematical physics III: Scattering theory, New York: Academic Press 1979

    Google Scholar 

  25. Bloch, C.: Diagram expansions in quantum statistical mechanics. In: Studies in Statistical Mechanics, Vol. III, de Boer, J., Uhlenbeck, G.E. (eds.). Amsterdam: North Holland 1965

    Google Scholar 

  26. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys.48, 119–130 (1976)

    Google Scholar 

  27. Hunzicker, W.: Cluster properties of multiparticle systems. J. Math. Phys.6, 6–10 (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. L. Lebowitz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dümcke, R. The low density limit for anN-level system interacting with a free bose or fermi gas. Commun.Math. Phys. 97, 331–359 (1985). https://doi.org/10.1007/BF01213401

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01213401

Keywords

Navigation