Skip to main content
Log in

Arachidonic acid metabolites and haemodynamics of the neonate

  • Proceedings of the Fifth International Workshop on Developmental Renal Physiology (Part II) August 26–28, 1992 Tremezzo, Italy
  • Review Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The role of eicosanoids, arachidonic acid (AA) metabolites, in blood pressure regulation under physiological and pathological conditions during the perinatal period is still under investigation. This review focuses on the synthesis and catabolism of some vasoactive AA metabolites by fetal, neonatal and placental cells, and on the vascular responses of the fetus and neonate to prostanoids and to the inhibitors of their synthesis. Vasodilator prostaglandins, PGE2 and prostacyclin (PGI2), increase steadily during pregnancy, while thromboxane A2 (TXA2), a potent vasoconstrictor, remains low during pregnancy, increasing only shortly before delivery. TXA2 participates in the closure of umbilical vessels and ductus arteriosus. In pregnancy-induced hypertension, increase in the synthesis of TXA2 occurs early during pregnancy. Decrease in the catabolism of AA precedes the onset of hypertension in the developing spontaneously hypertensive rat. In newborn piglets, platelet-activating factor, vasoconstrictor prostaglandins and leukotriene D4 have a marked constrictor effect on the pulmonary circulation and induce pulmonary hypertension, without affecting the systemic blood pressure. Although the role of AA metabolites in the regulation of haemodynamics during the perinatal period is not fully understood, it is apparent that several eicosanoids modulate the action of hormones and vasoactive agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reyes JL, Meléndes E, Escalante BA, Namorado MC (1989) Effect of synthesis inhibitors of thromboxane A2 and prostaglandin E2 on the regulation of sodium and water. J Pharmacol Exp Ther 251: 694–699

    PubMed  Google Scholar 

  2. Rosenkrans CF Jr, Paria BC, Davis DL, Milliken G (1992) Synthesis of prostaglandins by pig blastocysts cultured in medium containing estradiol or catechol estrogen. Prostaglandins 43: 309–319

    PubMed  Google Scholar 

  3. Novy MJ, Cook MJ, Manaugh L (1974) Indomethacin block of normal onset of parturition in primates. Am J Obstet Gynecol 118: 412–416

    PubMed  Google Scholar 

  4. Karim SMM (1978) On the use of blockers of prostaglandin synthesis in the control of labor. Adv Prostaglandin Thromboxane Res 4: 301–306

    PubMed  Google Scholar 

  5. Coceani F, Olley PM, Bodach E (1976) Prostaglandins: a possible regulator of muscle tone in the ductus arteriosus. Adv Prostaglandin Thromboxane Res 1: 417–424

    Google Scholar 

  6. Sharpe GL, Larsson KS, Thalme B (1974) Studies of closure of the ductus arteriosus. XII. In utero effect of indomethacin and sodium salicylate in rats and rabbits. Prostaglandins 9: 585–596

    Google Scholar 

  7. Sharpe GL, Thalme B, Larsson KS (1975) Studies on closure of the ductus arteriosus. XI. Ductal closure in utero by a prostaglandin synthetase inhibitor. Prostaglandins 10: 363–368

    Google Scholar 

  8. Arcilla RA, Thilenius OG, Ranniger K (1969) Congestive heart failure from suspected ductal closure in utero. J Pediatr 75: 74–78

    PubMed  Google Scholar 

  9. Wiqvist N, Lundström V, Green K (1975) Premature labor and indomethacin. Prostaglandins 10: 515–526

    PubMed  Google Scholar 

  10. Pace-Asciak CR (1976) Decreased renal prostaglandin catabolism precedes onset of hypertension in the developing spontaneously hypertensive rat. Nature 263: 510–511

    PubMed  Google Scholar 

  11. Chemtob S, Beharry K, Rex J, Varma DR, Aranda JV (1990) Changes in cerebrovascular prostaglandins and thromboxane as a function of systemic blood pressure. Cerebral flow autoregulation of the newborn. Circ Res 67: 674–682

    PubMed  Google Scholar 

  12. Van Geet KC, Eggermont E, Vermylen J (1992) Urinary TXB2 metabolites as indicator of in vivo platelet activation in the neonate (abstract). Proceedings of the 8th International Conference on Prostaglandins and Related Compounds, Montreal, Canada, 26–31 July, Montreal, Can., p. 29

  13. Seyberth HW, Rascher W, Schweer H, Kuhl PG, Mehls O, Scharer K (1985) Congenital hypokalemia with hypercalciuria in preterm infants: a hyperprostaglandinuric tubular syndrome different from Bartter syndrome. J Pediatr 107: 694–701

    PubMed  Google Scholar 

  14. Seyberth HW, Königer SJ, Rascher W, Kuhl PG, Schweer H (1987) Role of prostaglandins in hyperprostaglandin E syndrome and in selected renal tubular disorders. Pediatr Nephrol 1: 491–497

    PubMed  Google Scholar 

  15. Seyberth HW (1989) Prostaglandin metabolism in congenital tubular disorders. In: Schärer K. (ed.) Growth and Endocrine changes in children and adolescents with chronic renal failure. Pediatr Adolesc Endocrinol, Basel, Karger, 20: 147–150

    Google Scholar 

  16. Altken MA, Rice G, Brennecke S (1992) Relative abundance of human placental phospholipase A2 messenger RNA in late pregnancy. Prostaglandins 43: 361–370

    PubMed  Google Scholar 

  17. Izhar M, Pasmanik M, Marcus S, Shemesh M (1992) Dexamethasone inhibition of cyclooxygenase expression in bovine term placenta. Prostaglandins 43: 239–254

    PubMed  Google Scholar 

  18. López-Bernal A, Hansell DJ, Khong TY, Keeling JW, Turnbull AC (1990) Placental leukotriene B4 release in early pregnancy and in term and preterm labour. Early Hum Dev 23: 93–99

    PubMed  Google Scholar 

  19. Bennet PR, Elder MG (1992) The mechanisms of preterm labour, the interaction between amnion cells and leukocytes in the metabolism of arachidonic acid. Prostaglandins 43: 87–98

    PubMed  Google Scholar 

  20. Terragno NA, Terragno DA, McGiff JC (1976) The role of prostaglandins in the control of uterine blood flow. In: Lindheimer MD, Katz AI, Zuspan FP (eds) Hypertension in pregnancy. Wiley, New York, pp 391–398

    Google Scholar 

  21. Mitchell MD, Romero RJ, Lepera R, Rittenhouse L, Edwin SS (1990) Actions of endothelin-1 on prostaglandin production by gestational tissues. Prostaglandins 40: 627–635

    PubMed  Google Scholar 

  22. Mitchell MD (1991) Endothelins in perinatal biology. Semin Perinatol 15: 79–85

    PubMed  Google Scholar 

  23. Krzeski R, Long W, Katayama, Henry W (1992) Hemodynamic effects of endothelin-1 in the newborn piglet. Influence on pulmonary and systemic vascular resistance. J Cardiovasc Pharmacol 17 [Suppl 7]: S322-S325

    Google Scholar 

  24. Wang Y, Coceani F (1992) Prostaglandin and nitric oxide: evidence for a role in the dilatation of the pulmonary circulation at birth (abstract). Proceedings of the 8th International Conference on Prostaglandin and Related Compounds, Montreal, Canada, 26–31 July, Montreal, Can., p. 29

  25. Reyes JL, Nava E, Namorado MC (1992) Receptor-mediated effect of a synthetic thromboxane-analogue on cytosolic calcium in isolated proximal tubules. Prostaglandins 44: 145–154

    PubMed  Google Scholar 

  26. Sung RYT, Yin JA, Loong EPL, Fok TF, Lau J (1990) Topical prostaglandin E2 gel for cervical ripening and closure of the ductus arteriosus in the newborn. Arch Dis Child 65: 703–704

    PubMed  Google Scholar 

  27. Rankin JHG, Phernetton TM (1976) Circulatory responses of the near-term sheep fetus to prostaglandin E2. Am J Physiol 231: 760–765

    PubMed  Google Scholar 

  28. Novy MJ, Piasecki G, Jackson BT (1974) Effect of prostaglandins E2 and F2alpha on umbilical blood flow and fetal hemodynamics. Prostaglandins 5: 543–555

    PubMed  Google Scholar 

  29. Weiner CP, Robillard JE (1989) Effect of acute intravascular volume expansion on human fetal prostaglandin concentrations. Am J Obstet Gynecol 161: 1494–1497

    PubMed  Google Scholar 

  30. Leuschen MP, Ehrenfried JA, Willet LD, Schroder KA, Bussey ME, Bolam DL, Goodrich PD, Nelson RM (1991) Prostaglandin F1α levels during and after neonatal extracorporeal membrane oxygenation. J Thorac Cardiovasc Surg 101: 148–152

    PubMed  Google Scholar 

  31. Dunn M (1987) The role of arachidonic acid metabolites in homeostasis: non-steroidal anti-inflammatory drugs, renal function and biochemical, histological and clinical effects and drug interactions. Drugs 33 [Suppl 1]: 56–66

    PubMed  Google Scholar 

  32. Reyes JL, Meléndez E (1990) Effects of eicosanoids on the water and sodium balance of the neonate. Pediatr Nephrol 4: 630–634

    PubMed  Google Scholar 

  33. Blackshear JL, Davidman M, Stillman MT (1983) Identification of risks for renal insufficiency from non steroidal anti-inflammatory drugs. Arch Interm Med 143: 1130–1134

    Google Scholar 

  34. Winther JB, Hoskins E, Printz MP, Mendoza SA, Kirkpatrick SE, Friedman WF (1980) Influence of indomethacin on renal function in concious newborn lambs. Biol Neonate 38: 76–84

    PubMed  Google Scholar 

  35. Catterton Z, Sellers B, Gray B (1980) Inulin clearance in the premature infant receiving indomethacin. J Pediatr 96: 737–739

    PubMed  Google Scholar 

  36. Witter FR, Niebyl JR (1986) Inhibition of arachidonic acid metabolism in the perinatal period: pharmacology, clinical application and potential adverse effects. Semin Perinatol 10: 316–333

    PubMed  Google Scholar 

  37. Friedman WF, Hirschklau MJ, Printz MP, Pitlick PT, Kirkpatrick SE (1976) Pharmacologic closure of patent ductus arteriosus in the premature infant. N Engl J Med 295: 526–529

    PubMed  Google Scholar 

  38. Von Stockhausen V, Seyberth HW (1990) Effect of highly overdosed indomethacin in a preterm infant with symptomatic patent ductus arteriosus. Eur J Pediatr 149: 651–653

    PubMed  Google Scholar 

  39. Taub M, Sato G (1980) Growth of functional primary cultures of kidney epithelial cells in defined medium. J Cell Physiol 105: 369–378

    PubMed  Google Scholar 

  40. Rodriguez MG, Reyes JL (1992) Prostaglandin E2 modifies the intracellular pH in cultured renal cells (MDCK) (abstract) Proceedings of the 8th International Conference on Prostaglandins and Related Compounds, Montreal, 26–31 July, Montreal, Canada, p. 76

  41. Novy MJ (1978) Effects of indomethacin on labor, fetal oxygenation and fetal development in rhesus monkeys. Adv Prostaglandin Thromboxane Res 4: 285–300

    PubMed  Google Scholar 

  42. Hahne B, Selen G, Persson AEG (1984) Indomethacin inhibits renal functional adaptation to nephron loss. Renal Physiol 7: 13–21

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reyes, J.L. Arachidonic acid metabolites and haemodynamics of the neonate. Pediatr Nephrol 7, 841–844 (1993). https://doi.org/10.1007/BF01213371

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01213371

Key words

Navigation