Skip to main content
Log in

Disturbances of lipid metabolism in children with chronic renal failure

  • Invited Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

This review discusses the pathogenesis, clinical significance and current therapy of hyperlipoproteinaemia (HLP) in children with chronic renal failure. Uraemic dyslipidaemia, characterized by hypertriglyceridaemia and low high-density lipoprotein-cholesterol levels, is present in the majority patients with chronic renal failure. In addition, serum levels of total cholesterol, very lowdensity lipoprotein-cholesterol, low-density lipoproteincholesterol and apolipoprotein B are frequently elevated. The pathophysiological mechanisms causing these disturbances are complex and mainly involve a diminished catabolism of triglyceride-rich lipoproteins. For unknown reasons and independent of other lipoproteins, serum levels of the highly atherogenic and thrombogenic lipoprotein(a) are also often elevated. HLP is an important factor in cardiovascular morbidity and mortality. In addition, dyslipidaemia may enhance progression of renal disease in patients with residual renal function. Therefore, treatment of HLP seems indicated in overtly hyperlipidaemic patients, but until there is more experience with lipid-lowering drugs in children, no safe recommendations for pharmacological treatment of HLP can be given. Dietary modifications can be recommended only to a limited extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wynder E (1989) Coronary artery disease prevention: cholesterol, a pediatric perspective. Prev Med 18:323–409

    PubMed  Google Scholar 

  2. Avram MM (1989) Topics in nephrology: The Long Island College Hospital — role of cholesterol and lipids in renal disease. Am J Med 87:5N

    Google Scholar 

  3. D'Amico G, Sanna G (1991) Lipid abnormalities in renal disease. Kidney Int 39 (Suppl 31):S1-S72

    Google Scholar 

  4. Berger M, James GP, Davis ER, Jasper PM, Brouhard BH, Travis LB, Cunningham RJ (1978) Hyperlipidemia in uremic children: response to peritoneal dialysis and hemodialysis. Clin Nephrol 9: 19–24

    PubMed  Google Scholar 

  5. Papadopoulou ZL, Sandler P, Tina LU, Jose PA, Calcagno PL (1981) Hyperlipidemia in children with chronic renal insufficiency. Pediatr Res 15:887–891

    PubMed  Google Scholar 

  6. Asayama K, Ito H, Nakahara C, Hasegawa A, Kato K (1984) Lipid profiles and lipase activities in children and adolescents with chronic renal failure treated conservatively or with hemodialysis or transplantation. Pediatr Res 18: 783–788

    PubMed  Google Scholar 

  7. Zacchello G, Pagnan A, Sidran MP, Ziron L, Braggion M, Pavanello L, Facchin P (1987) Further definition of lipid lipoprotein abnormalities in children with various degrees of chronic renal insufficiency. Pediatr Res 21: 462–465

    PubMed  Google Scholar 

  8. Massry SG (1989) Lipid abnormalities, renal failure, and parathyroid hormone. Am J Med 87: 5-42N–5-44N

    Google Scholar 

  9. Querfeld U, Salusky IB, Nelson P, Foley J, Fine RN (1988) Hyperlipidemia in pediatric patients undergoing peritoneal dialysis. Pediatr Nephrol 2: 447–452

    PubMed  Google Scholar 

  10. The Lipid Research Clinics Program Epidemiology Committee (1979) Plasma lipid distributions in selected North American populations: The Lipid Research Clinics Program Prevalence Study. Circulation 60: 427–439

    Google Scholar 

  11. Chan JK, Varghese Z, Moorhead JF (1981) Lipid abnormalities in uremia, dialysis and transplantation. Kidney Int 19: 625–637

    PubMed  Google Scholar 

  12. Querfeld U, Lang M, Kohl B, Fiehn W, Schärer K (1992) Lipoprotein (a) serum levels and apolipoprotein (a) phenotypes in children with chronic renal disease. Ped Res, accepted for publication

  13. Heuck CC, Ritz E (1980) Hyperlipoproteinemia in renal insufficiency. Nephron 25: 1–7

    PubMed  Google Scholar 

  14. Chan MK, Persaud J, Varghese Z, Moorhead JF (1984) Pathogenic roles of post-heparin lipases in lipid abnormalities in hemodialysis patients. Kidney Int 25: 812–818

    PubMed  Google Scholar 

  15. Savdie E, Gibson JC, Crawford GA, Simons LA, Mahony JF (1980) Impaired triglyceride clearance as a feature of both uremic and posttransplant triglyceridemia. Kidney Int 18: 771–782

    Google Scholar 

  16. Goldberg AP, Sherrard DJ, Brunzell JD (1978) Adipose tissue lipoprotein lipase in chronic hemodialysis: role in plasma triglyceride metabolism. J Clin Endocrinol Metab 47: 1173–1182

    PubMed  Google Scholar 

  17. Dieplinger H, Schoenfeld IPY, Fielding CJ (1986) Plasma cholesterol metabolism in end-stage renal disease. Difference between treatment by hemodialysis or peritoneal dialysis. J Clin Invest 77: 1071–1083

    PubMed  Google Scholar 

  18. Pasternack A, Vänttinen T, Solakivi T, Kuusi T, Korte T (1987) Normalization of lipoprotein lipase and hepatic lipase by gemfibrozil results in correction of lipoprotein abnormalities in chronic renal failure. Clin Nephrol 27: 163–168

    PubMed  Google Scholar 

  19. Roullet JB, Lacour B, Yvert JP, Drueke T (1986) Correction by insulin of disturbed TG-rich LP metabolism in rats with chronic renal failure. Am J Physiol 250: E373-E376

    PubMed  Google Scholar 

  20. Murase T, Cattran DC, Rubenstein B, Steiner G (1975) Inhibition of lipoprotein lipase by uremic plasma, a possible cause of hypetriglyceridemia. Metabolism 24: 1279–1286

    PubMed  Google Scholar 

  21. Wakabayashi Y, Okubo M, Shimade H, Sato N, Koide A, Marumo F, Nakamura H (1987) Decreased VLDL apoprotein C-II/apoprotein C-III ratio may be seen in both normotriglyceridemic and hypertriglyceridemic patients on chronic hemodialysis treatment. Metabolism 36: 815–820

    PubMed  Google Scholar 

  22. Walldius G, Norbeck JE (1978) Defective fatty acid incorporation into adipose tissue (FIAT) in uremic subjects with hypertriglyceridemia. Eur J Clin Invest 8: 346

    Google Scholar 

  23. Alaupovic P, Tavella M, Bard JM, Wang CS, Attman PO, Koren E, Corder C, Knight-Gibson C, Downs D (1988) Lipoprotein particles in hypertriglyceridemic states. Adv Exp Med Biol 243: 289–297

    PubMed  Google Scholar 

  24. Gonen B, Boldberg AP, Harter HR, Schonfeld G (1985) Abnormal cell-interactive properties of low-density lipoproteins isolated from patients with chronic renal failure. Metabolism 34: 10–14

    PubMed  Google Scholar 

  25. Chan MK, Varghese Z, Persaud JW, Baillod RA, Moorhead JF (1982) Hyperlipidemia in patients on maintenance hemo- und peritoneal dialysis: the relative pathogenetic roles of triglyceride production and triglyceride removal. Clin Nephrol 17: 183–190

    PubMed  Google Scholar 

  26. Attman P-O, Alaupovic P (1991) Lipid abnormalities in chronic renal insufficiency. Kidney Int 39 [Suppl 31]: S16-S23

    Google Scholar 

  27. Parra HJ, Mezdour H, Cachera C, Dracon M, Tacquet A, Fruchart JC (1987) Lp(a) lipoprotein in patients with chronic renal failure treated by hemodialysis. Clin Chem 33: 721

    Google Scholar 

  28. Scanu AM, Fless GM (1990) Lipoprotein (a): heterogeneity and biological relevance. J Clin Invest 85: 1709–1715

    PubMed  Google Scholar 

  29. Rath M, Niendorf A, Reblin T, Dietel M, Krebber HJ, Beisiegel U (1989) Detection and quantification of lipoprotein(a) in the arterial wall of 107 coronary bypass patients. Arteriosclerosis 9: 579–592

    PubMed  Google Scholar 

  30. Hoff HF, Beck GJ, Skibinski C, Juergens G, O'Neill J, Kramer J, Lytle B (1988) Serum Lp(a) level as a predictor of vein graft stenosis after coronary artery bypass surgery in patients. Circulation 77: 1238–1244

    PubMed  Google Scholar 

  31. Utermann G, Menzel HJ, Kraft HG, Dubs HC, Kemmler HG, Seitz C (1987) Lp(a) glycoprotein phenotypes. Inheritance and relation to Lp(a)-lipoprotein concentrations in plasma. J Clin Invest 80: 558–465

    Google Scholar 

  32. Boerwinkle E, Menzel HJ, Kraft HG, Uterman G (1989) Genetics of the quantitative Lp[a] lipoprotein trait. III. Contribution of Lp[a] glycoprotein phenotypes to normal lipid variation. Hum Genet 82: 73–78

    PubMed  Google Scholar 

  33. Ibels LS, Simons LA, King JO (1975) Studies on the nature and causes of hyperlipidemia in uremia, maintenance dialysis, and renal transplantation. Q J Med 176: 601–614

    Google Scholar 

  34. Cattran DC, Fenton SSA, Wilson DR, Steiner G (1976) Defective triglyceride removal in lipidemia associated with peritoneal dialysis and hemodialysis. Ann Intern Med 85: 29–33

    PubMed  Google Scholar 

  35. Lindholm B, Norbeck HE (1986) Serum lipids and lipoproteins during continuous ambulatory peritoneal dialysis. Acta Med Scand 220: 143–151

    PubMed  Google Scholar 

  36. Querfeld U, Le Boeuf RC, Salusky JB, Nelson P, Laidlaw S, Fine RN (1991) Lipoproteins in children treated with continuous peritoneal dialysis. Ped Res 29: 155–159

    Google Scholar 

  37. Saku K, Sasaki J, Naito S, Arakawa K (1989) Lipoprotein and apolipoprotein losses during continuous ambulatory peritoneal dialysis. Nephron 51: 220–224

    PubMed  Google Scholar 

  38. Hahn R, Oette K, Mondorf H, Finke S, Sieberth HG (1983) Analysis of cardiovascular risk factors in chronic hemodialysis patients with special attention to the hyperlipoproteinemias. Atherosclerosis 48: 279–288

    PubMed  Google Scholar 

  39. Goldberg AP, Harter HR, Patsch W, Schechtman KB, Province M, Weerts C, Kuisk I, McCrate MM, Schonfeld G (1983) Racial differences in plasma high-density lipoproteins in patients receiving hemodialysis. A possible mechanism for accelerated atherosclerosis in white men. N Engl J Med 308: 1245–1252

    PubMed  Google Scholar 

  40. Parsy D, Dracon M, Cachera C, Parra H-J, Vanhoutte G, Tacquet A, Fruchart J-C (1988) Lipoprotein abnormalities in chronic hemodialysis patients. Nephrol Dial Transplant 3: 51–56

    PubMed  Google Scholar 

  41. Attman P-O, Alaupovic P (1991) Lipid and apolipoprotein profiles of uremic dyslipoproteinemia. The relation to renal function and dialysis. Nephron 57: 401–410

    PubMed  Google Scholar 

  42. Burk JF, Francos CD, Moore LL, Cho SY, Sasker M (1978) Accelerated atherosclerosis in chronic dialysis patients — another look. Nephron 21: 181–185

    PubMed  Google Scholar 

  43. Vincenti F, Amend WJ, Abele J, Feduska NJ, Salvatierra O (1980) The role of hypertension in hemodialysis-associated atherosclerosis. Am J Med 68: 363–369

    PubMed  Google Scholar 

  44. Degoulet P, Legrain M, Reach I, Aime F, Devries C, Rojas P, Jacobs C (1982) Mortality risk factors in patients treated by chronic hemodialysis. Nephron 31: 103–110

    PubMed  Google Scholar 

  45. Ritz E, Augustin J, Bommer J, Gnasso A, Haberbosch W (1985) Should hyperlipidemia of renal failure be treated? Kidney Int 28 [Suppl 17]: S84-S87

    Google Scholar 

  46. Ritz E, Querfeld U (1989) Atherogenesis — is it accelerated in uremia? Semin Dial 2: 246–252

    Google Scholar 

  47. Frohlich ED, Apstein C, Chobanian AV, Devereux RB, Dustan HP, Dzau V, Fauad-Tarazi F, Horan MJ, Marcus M, Massie B, Pfeffer MA, Re RN, Roccella EJ, Savage D, Shub C (1992) The heart in hypertension. N Engl J Med 327: 998–1008

    PubMed  Google Scholar 

  48. Brunner FP, Boyer M, Brynger H, Dykes SR, Fassbinder W, Geerlings W, Rizzoni G, Selwood NH, Tufveson G, Wing AJ (1988) Demography of dialysis and transplantation in children in Europe, 1985. Nephrol Dial Transplant 3: 235–243

    PubMed  Google Scholar 

  49. French JW, Yamanaka BS, Ostwald R (1967) Dietary induced glomerulosclerosis in the guinea pig. Arch Pathol 83: 204–220

    PubMed  Google Scholar 

  50. Al-Shebeb T, Frohlich J, Magil AB (1988) Glomerular disease in hypercholesterolemic guinea pigs: a pathogenetic study. Kidney Int 33: 498–507

    PubMed  Google Scholar 

  51. Groene HJ, Groene E, Luthe H, Weber MH, Helmchen U (1989) Induction of glomerular sclerosis by a lipid-rich diet in male rats. Lab Invest 60: 443–446

    Google Scholar 

  52. Kasiske BL, O'Donell MP, Schmitz PG, Kim Y, Keane WF (1990) Renal injury of diet-induced hypercholesterolemia in rats. Kidney Int 37: 880–891

    PubMed  Google Scholar 

  53. Verbeuren TJ, Jordeans FH, Zonnekeyn LL, Van Hove CE, Coene MC, Herrmann AG (1986) Effect of hypercholesterolemia on vascular reactivity in the rabbit. Circ Res 58: 552–564

    PubMed  Google Scholar 

  54. Sreenharan N, Jayakody RL, Senaratne MPJ, Thomson ABR, Kappagoda CT (1986) Endothelium-dependent relaxation and experimental atherosclerosis in the rabbit aorta. Can J Physiol Pharmacol 64: 1451–1453

    PubMed  Google Scholar 

  55. Diamond JR, Karnovsky MJ (1987) Exacerbation of chronic aminonucleoside nephrosis by dietary cholesterol. Kidney Int 2: 671–677

    Google Scholar 

  56. Kasiske BL, O'Donell MP, Cowardin W, Keane WF (1990) Lipids and the kidney. Hypertension 15: 443–450

    PubMed  Google Scholar 

  57. Imai Y, Matsumura H, Miyajami H, Oka K (1977) Serum and tissue lipids and glomerulosclerosis in the spontaneously hypercholesterolemic rat, with a note on the effects of gonadectomy. Atherosclerosis 27: 165–178

    PubMed  Google Scholar 

  58. Kasiske BL, Cleary MP, O'Donell MP, Keane WF (1985) Effects of genetic obesity on renal structure and function in the Zucker rat. J Lab Clin Med 106: 598–604

    PubMed  Google Scholar 

  59. Gjone E, Blomhoff JP, Skarbovik AJ (1974) Possible association between an abnormal low density lipoprotein and nephropathy in lecithin cholesterol acyltransferase deficiency. Clin Chim Acta 54: 11–18

    PubMed  Google Scholar 

  60. Amatruda JM, Margolis S, Hutchins GM (1974) Type III hyperlioproteinemia with mesangial foam cells in renal glomeruli. Arch Pathol 98: 51–54

    PubMed  Google Scholar 

  61. Saito T, Sato H, Akui N, Ootaka T, Furuyama T, Yoshinaga K (1987) Focal glomerular sclerosis in non-nephrotic patients with hyperlipidemia. Jpn J Nephrol 29: 1107–1114

    Google Scholar 

  62. Watanabe Y, Ozaki I, Yoshida F, Fukatsu A, Itoh Y, Matsuo S, Sakamoto N (1989) A case of nephrotic syndrome with glomerular lipoprotein deposition with capillary ballooning and mesangiolysis. Nephron 51: 265–270

    PubMed  Google Scholar 

  63. Kasiske BL, O'Donell MP, Cleary MP, Keane WF (1988) Treatment of hyperlipidemia reduces glomerular injury in obese Zucker rats. Kidney Int 33: 667–672

    PubMed  Google Scholar 

  64. Keane WF (1991) Hyperlipidemia and progressive renal disease. Kidney Int 39 [Suppl 31]: S41-S48

    Google Scholar 

  65. Diamond JR, Hanchak NA, McCarter MD, Karnovsky MJ (1990) Cholestyramine resin ameliorates chronic aminonucleoside nephrosis. Am J Clin Nutr 51: 606–611

    PubMed  Google Scholar 

  66. Harris KPG, Plurkerson ML, Yates J, Klahr S (1990) Lovastatin ameliorates the development of glomerulosclerosis and uremia in experimental nephrotic syndrome. Am J Kidney Dis 15: 16–23

    PubMed  Google Scholar 

  67. Moorhead JF, El Nahas M, Chan MK, Varghese Z (1982) Lipid nephrotoxicity in chronic progressive glomerular and tululo-interstitial disease. Lancet II: 1309–1312

    Google Scholar 

  68. Wheeler DC, Persaud J, Kingstone D, Sweny P, Varghese Z, Moorhead JF (1989) Receptor-mediated binding of human low density lipoprotein (LDL) to rat mesangial cells in vitro (abstract). Kidney Int 35: 439

    Google Scholar 

  69. Coritsidis G, Rifici V, Schlondorff D (1990) The effects of oxidized lipoproteins on cultured mesangial cells (MC) (abstract). Kidney Int 37: 502A

    Google Scholar 

  70. Coritsidis G, Neugarten J, Schlondorff D (1990) In vivo glomerular uptake of native and oxidized low density lipoprotein (abstract). Kidney Int 37: 501A

    Google Scholar 

  71. Iverius PH (1972) The interaction between human plasma lipoproteins and connective tissue glycosaminoglycans. J Biol Chem 247: 2607–2613

    PubMed  Google Scholar 

  72. Camps L, Reina M, Lobera M, Vilar S, Olivecrona T (1990) Lipoprotein lipase: cellular origin and functional distribution. Am J Physiol 258: C673-C681

    PubMed  Google Scholar 

  73. Pietromonaco SF, Farquhar MG (1989) Identification and characterization of a cDNA encoding the core protein of heparin sulfate proteoglycans from the rat glomerular basement membrane (abstract). Kidney Int 35: 163

    Google Scholar 

  74. Moorhead JF, Wheeler DC, Varghese Z (1989) Glomerular structures and lipids in progressive renal disease. Am J Med 87: 5N-12N

    Google Scholar 

  75. Thomson NM, Holdsworth SR, Glasgow EF, Atkins RC (1979) The macrophage in the development of experimental crescentic glomerulonephrotis. Am J Pathol 94: 223–240

    PubMed  Google Scholar 

  76. Diamond JR, Karnovsky MJ (1988) Editorial review: focal segmental glomerulosclerosis: analogies to atherosclerosis. Kidney Int 33: 917–924

    PubMed  Google Scholar 

  77. D'Amico G, Gentile MG (1991) Pharmacological and dietary treatment of lipid abnormalities in nephrotic patients. Kidney Int 39 [Suppl 31]: S65-S69

    Google Scholar 

  78. Sanfelippo ML, Swenson RS, Reaven GM (1978) Response of plasma triglycerides to dietary change in patients on hemodialysis. Kidney Int 14: 180–186

    PubMed  Google Scholar 

  79. Sanfelippo ML, Swenson RS, Reaven GM (1977) Reduction of plasma triglycerides by diet in subjects with chronic renal failure. Kidney Int 11: 54–61

    PubMed  Google Scholar 

  80. Gokal R, Mann JI, Oliver O, Ledingham JGG (1978) Dietary treatment of hyperlipidemia in chronic hemodialysis patients. Am J Clin Nutr 31: 1915–1918

    PubMed  Google Scholar 

  81. Ciardella F, Morelli E, Niosi F, Caprioli R, Baldi R, Cupisti A, Petronio G, Carbone C, Barsotti G (1986) Effects of a low phosphorus, low nitrogen diet supplemented with essential amino acids and ketoanalogues on serum triglycerides of chronic uremic patients. Nephron 42: 196–199

    PubMed  Google Scholar 

  82. Aparicio M, Boucet JL, Gin H, Potaux L, Morel D, De Precigout V, Lipermann F, Gonzalez R (1988) Effect of a low-protein diet on urinary albumin excretion in uremic patients. Nephron 50: 288–291

    PubMed  Google Scholar 

  83. Barsotti G, Navalesi R, Giampietro O, Ciardella F, Morelli E, Cupisti A, Mantovanelli S (1988) Effects of a vegetarian, supplemented diet on renal function, proteinuria, glucose metabolism in patients with overt diabetic nephropathy and renal insufficiency. Contrib Nephrol 65: 87–94

    PubMed  Google Scholar 

  84. Attman PO, Gustafson A, Alaupovic P, Wang CS (1984) Effects of protein reduced diet on plasma lipids, apolipoproteins and lipolytic activities in patients with chronic renal failure. Am J Nephrol 4: 92–98

    PubMed  Google Scholar 

  85. Ihle BU, Becker GJ, Whitworth JA, Charlwood RA, Kincaid-Smith PS (1989) The effect of protein restriction on the progression of renal insufficiency. N Engl J Med 321: 1773–1777

    PubMed  Google Scholar 

  86. Wingen AM, Fabian-Bach C, Mehls O (1992) The use of low protein diets in children with CRF; the results of the European Study Group (abstract) Pediatr Nephrol 6: C51

    Google Scholar 

  87. Goldberg AP, Appelbaum-Bowden DM, Bierman EL, Hazard WR, Haas LB, Sherrard DJ, Brunzell JD, Huttunen JK, Einholm C, Nikkila EA (1979) Increase in lipoprotein lipase during clofibrate treatment of hypertriglyceridemia in patients on hemodialysis. N Engl J Med 301: 1073–1076

    PubMed  Google Scholar 

  88. Norbeck NE, Anderson P (1982) Treatment of uremic hypertriglyceridaemia with bezafibrate. Atherosclerosis 44: 125–136

    PubMed  Google Scholar 

  89. Chan MK (1990) Sustained-release bezafibrate corrects lipid abnormalities in patients on continuous ambulatory peritoneal dialysis. Nephron 56: 56–61

    PubMed  Google Scholar 

  90. Glueck CJ (1982) Colestipol and probucol: treatment of primary and familial hypercholesterolemia and amelioration of atherosclerosis. Ann Intern Med 86: 475–482

    Google Scholar 

  91. Grundy SM (1990) Management of hyperlipidemia of kidney disease. Kidney Int 37: 847–853

    PubMed  Google Scholar 

  92. Kaplan R, Aynedjian HS, Schlondorff D, Bank N (1990) Renal vasoconstriction caused by short-term cholesterol feeding is corrected by thromboxane antagonist or probucol. J Clin Invest 86: 1707–1714

    PubMed  Google Scholar 

  93. Buckley MMT, Goa KL, Price AH, Brogden RN (1989) Probucol. A reappraisal of its pharmacological properties and therapeutic use in hypercholesterolaemia. Drugs 37: 761–800

    PubMed  Google Scholar 

  94. Sanjuro P, Martul P, Sasieta M, Lafuente P, Ariza F, Cabeza I (1988) Treatment with probucol of children with familial hypercholesterolemia. Acta Paediatr Scand 77: 132–135

    PubMed  Google Scholar 

  95. Steinberg D, Parthasarathy S, Carew TE, Witztum JL (1989) Beyond cholesterol: modifications of low density lipoprotein that increase its atherogenicity. N Engl J Med 320: 915–924

    PubMed  Google Scholar 

  96. Wanner C, Lubrich-Birkner I, Summ O, Wieland H, Schollmeyer (1992) Effect of simvastatin on qualitative and quantitative changes of lipoprotein metabolism in CAPD patients. Nephron 62: 40–46

    PubMed  Google Scholar 

  97. Hamazaki T, Nakazawa R, Tateno S, Shishido H, Isoda K, Hattori Y, Yoshida T, Fujita T, Yano S, Kumagai A (1984) Effects of fish oil rich in eicosapentaenoic acid on serum lipid in hyperlipidemic hemodialysis patients. Kidney Int 26: 81–84

    PubMed  Google Scholar 

  98. Rylance PB, Gordge MP, Saynor R, Parsons V, Weston MJ (1986) Fish oil modifies lipids and reduces platelet aggregability in haemodialysis patients. Nephron 43: 196–202

    PubMed  Google Scholar 

  99. Harris WS, Dujovne CA, Zucker M, Johnson B (1988) Effects of a low saturated fat, low cholesterol fish oil supplement in hypertriglyceridemic patilents. Ann Intern Med 109: 465–470

    PubMed  Google Scholar 

  100. Scharschmidt LA, Gibbons NB, McGarry L, Berger P, Axelrod M Janis R, Ko YH (1987) Effects of dietary fish oil on renal insufficiency in rats with subtotal nephrectomy. Kidney Int 32: 700–709

    PubMed  Google Scholar 

  101. Golper TA, Ahmad S (1992)l-Carnitine administration on hemodialysis patients: has its time come? Semin Dial 5: 94–98

    Google Scholar 

  102. Basile C, Lacour B, DiGiulio S, Drüeke T (1985) Effect of oral carnitine supplementation on disturbances of lipid metabolism in the uremic rat. Nephron 39: 50–54

    PubMed  Google Scholar 

  103. Goldberg AP, Geltman EM, Gavin JR, Carney RM, Hagberg JM, Delmez JA, Naumovich A, Oldfield MH, Harter H (1986) Exercise training reduces coronary risk and effectively rehabilitates hemodialysis patients. Nephron 42: 311–316

    PubMed  Google Scholar 

  104. Nizankowska-Blaz T, Abramowicz R (1983) Effects of intensive physical training on serum lipids and lipoproteins. Acta Paediatr Scand 72: 357–359

    PubMed  Google Scholar 

  105. Fripp RR, Hodgson JL (1987) Effect of resistive training on plasma lipid and lipoprotein levels in male adolescents. J Pediatr 111: 926–931

    PubMed  Google Scholar 

  106. Lardinois CK, Neuman SL (1988) The effects of antihypertensive agents on serum lipids and lipoproteins. Arch Intern Med 148: 1280–1288

    PubMed  Google Scholar 

  107. Gianturco SH, Bradley WA (1991) Triglyceride-rich lipoproteins and their role in atherogenesis. Curr Opin Lipidol 2: 324–328

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Querfeld, U. Disturbances of lipid metabolism in children with chronic renal failure. Pediatr Nephrol 7, 749–757 (1993). https://doi.org/10.1007/BF01213345

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01213345

Key words

Navigation