Schrödinger operators with an electric field and random or deterministic potentials


We prove that the Schrödinger operatorH=−d 2/dx 2+V(x)+F·x has purely absolutely continuous spectrum for arbitrary constant external fieldF, for a large class of potentials; this result applies to many periodic, almost periodic and random potentials and in particular to random wells of independent depth for which we prove that whenF=0, the spectrum is almost surely pure point with exponentially decaying eigenfunctions.

This is a preview of subscription content, access via your institution.


  1. 1.

    Abramovitz, M., Stegun, I. A.: Handbook of mathematical functions. Dover: N.B.S. 1965

    Google Scholar 

  2. 2.

    Avron, Y., Herbst, I.: Spectral and scattering theory of Schrödinger operators related to the Stark effect. Commun. Math. Phys.52, 239–254 (1977)

    Google Scholar 

  3. 3.

    Carmona, R.: Exponential localization in one dimensional disorders systems. Duke Math. J.49, 191–213 (1982)

    Google Scholar 

  4. 4.

    Craig, W., Simon, B.: Subharmonicity of the Liapunov index (to be published)

  5. 5.

    Dunford, N., Schwarz, J. T.: Linear operators. II. New York: Wiley 1963

    Google Scholar 

  6. 6.

    Goldsheid, I. Ja., Molčanov, S. A., Pastur, L. A.: A pure point spectrum of the stochastic one dimensional Schrödinger equation. Funct. Anal. Appl.11, 1–10 (1977)

    Google Scholar 

  7. 7.

    Herbst, I., Howland, J.: The Stark ladder and other one-dimensional external field problems. Commun. Math. Phys.80, 23 (1981)

    Google Scholar 

  8. 8.

    Hörmander, L.: Hypoelliptic differential equations of second order. Acta Mathematica119, 147–171 (1967)

    Google Scholar 

  9. 9.

    Kunz, H., Souillard, B.: Sur le spectre des opérateurs aux différences finies aléatoires. Commun. Math. Phys.78, 201–246 (1980)

    Google Scholar 

  10. 10.

    Molčanov, S. A.: The structure of eigenfunctions of one dimensional unordered structures. Math. USSR Izv.12, 69–101 (1978)

    Google Scholar 

  11. 11.

    Mourre, E.: Absence of singular continuous spectrum for certain self-adjoint operators. Commun. Math. Phys.78, 391–408 (1981)

    Google Scholar 

  12. 12.

    Stone, M. H.: Linear transformations in Hilbert space and their applications to analysis. Providence: Am. Math. Soc. Coll. Publ.15, 1932

    Google Scholar 

Download references

Author information



Additional information

Partially supported by N.S.F. Grant MCS-82-02045

Partially supported by N.S.F. Grant MCS-81-20833

Communicated by T. Spencer

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bentosela, F., Carmona, R., Duclos, P. et al. Schrödinger operators with an electric field and random or deterministic potentials. Commun.Math. Phys. 88, 387–397 (1983).

Download citation


  • Neural Network
  • Statistical Physic
  • Complex System
  • Nonlinear Dynamics
  • Large Class