Skip to main content
Log in

New approach to the semiclassical limit of quantum mechanics

I. Multiple tunnelings in one dimension

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We propose a new approach for the estimate of the rate of degeneracy of the lowest eigenvalues of the Schrödinger operator in the presence of tunneling based on the theory of diffusion processes. Our method provides lower and upper bounds for the energy splittings and the rates of localization of the wave functions and enables us to discuss cases which, as far as we know, have never been treated rigorously in the literature. In particular we give an analysis of the effect on eigenvalues and eigenfunctions of localized deformations of 1) symmetric double well potentials 2) potentials periodic and symmetric over a finite interval. Theses situations are characterized by a remarkable dependence on such deformations. Our probabilistic techniques are inspired by the theory of small random perturbations of dynamical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thompson, C.J., Kac, M.: Studies Appl. Math.48, 257 (1969)

    Google Scholar 

  2. Harrell, E.M.: Commun. Math. Phys.60, 73 (1978)

    Google Scholar 

  3. Harrell, E.M.: Commun. Math. Phys.75, 239 (1980)

    Google Scholar 

  4. Jona-Lasinio, G.: In: Quantum fields — algebras processes, p. 79. L. Streit (ed). Wien: Springer 1980

    Google Scholar 

  5. Nelson, E.: Phys. Rev.150, 1079 (1966), and Dynamical theories of brownian motion. Princeton: Princeton University Press 1967

    Google Scholar 

  6. Kac, M.: Probability and related topics in physical sciences, Chap. IV. New York, London: Interscience 1959

    Google Scholar 

  7. Guerra, F., Ruggiero, P.: Phys. Rev. Lett.31, 1022 (1973)

    Google Scholar 

  8. Albeverio, S., Hoegh-Krohn, R., Streit, L.: J. Math. Phys.18, 907 (1977)

    Google Scholar 

  9. Fukushima, M.: Dirichlet forms and Markov processes. Tokyo: Kodansha Ltd. Company 1980

    Google Scholar 

  10. Reed, M., Simon, B.: Methods of modern mathematical physics, Vol. IV. New York, London: Academic Press 1978

    Google Scholar 

  11. Ventzel, A.D.: Theory of Prob. and Appl.18, 1 (1973)

    Google Scholar 

  12. Reed, M., Simon, B.: Methods of modern mathematical physics, Vol. II, New York, London: Academic Press 1978

    Google Scholar 

  13. Carmona, R.: J. Functional Analysis33, 259 (1979)

    Google Scholar 

  14. Olver, F.W.J.: Proc. Camb. Phyl. Soc.57, 790 (1961)

    Google Scholar 

  15. Dynkin, E.B.: Markov processes. Berlin, Heidelberg, New York: Springer 1965

    Google Scholar 

  16. Gihman, I.I., Skorohod, A.V.: Stochastic differential equations, Chap. 3. Berlin, Heidelberg, New York: Springer 1972

    Google Scholar 

  17. Ventzel, A.D.: Sov. Math. Dokl.13, 65 (1972)

    Google Scholar 

  18. Levinson, N.: Ann. Math.5, 428 (1950)

    Google Scholar 

  19. Ventzel, A.D., Freidlin, M.I.: Usp. Math. Nauk.25, 3 (1970); [English translation Russ. Math. Surv.25, 1 (1970)]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Ginibre

Supported in part by GNSM

GNFM

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jona-Lasinio, G., Martinelli, F. & Scoppola, E. New approach to the semiclassical limit of quantum mechanics. Commun.Math. Phys. 80, 223–254 (1981). https://doi.org/10.1007/BF01213012

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01213012

Keywords

Navigation