Skip to main content
Log in

∑II∑ threshold formulas

  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

A ∑II∑ formula has the form

, where eachL is either a variable or a negated variable. In this paper we study the computation of threshold functions by ∑II∑ formulas. By combining the proof of the Fredman-Komlós bound [5, 10] and a counting argument, we show that fork andn large andkn/2, every ∑II∑ formula computing the threshold functionT nk has size at least exp\((\Omega (\sqrt {k/\ln k} ))nlogn\). Fork andn large andkn 2/3, we show that there exist ∑II∑ formulas for computingT nk with size at most exp\((2(\sqrt {k/\ln k} ))nlogn\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. B. Boppana: Optimal separations between concurrent-write parallel machines.Proceedings of the 23rd ACM STOC, 1989, 320–326.

  2. R. B. Boppana: Amplification of probabilistic boolean formulas,Advances in Computing Research,5 (1989), 27–45.

    Google Scholar 

  3. R. B. Boppana, andMichael Sipser:The Complexity of Finite Functions, Chapter 14, The Handbook of Theoretical Computer Science, (J. van Leeuven, ed.), Elsevier Science Publishers B. B., 1990, 759–804.

  4. I. Csiszár, andJ. Körner:Information Theory, Coding Theorems for Discrete Memoryless Systems, Akadémiai Kiadó, Budapest, 1981.

    Google Scholar 

  5. M. Fredman, andJ. Komlós: On the size of separating systems and perfect hash functions,Siam J. Alg. Disc. Meth., 1984, 61–68.

  6. J. Hastad:Computational Limitations for Small Depth Circuits, MIT Press, 1986.

  7. G. Hansel: Nombre minimal de contacts de fermature nécessaires pour réaliser une fonction booléenne symétrique den variables,C. R. Acad. Sci. Paris 258 (1964), 6037–6040.

    Google Scholar 

  8. L. S. Khasin: Complexity bounds for the realization of monotone symmetrical functions by means of formulas in the basis ∨, ∧, ⌍,Sov. Phys. Dokl. 14 (1970), 1149–1151.

    Google Scholar 

  9. V. M. Khrapchenko: A method of obtaining lower bounds for the complexity π-schemes,Math. Notes Acad. Sci. USSR 11 (1972), 474–479.

    Google Scholar 

  10. J. Körner: Fredman-Komlós bound and information theory,Siam J. Alg. Disc. Meth., 1986, 560–570.

  11. R. E. Krichevskii: Complexity of contact circuits realizing a function of logical algebra,Sov. Phys. Dokl. 8 (1964), 770–772.

    Google Scholar 

  12. I. Newman, P. Ragde, andA. Wigderson: Perfect hashing, graph entropy and circuit complexity,Proceedings of the 5th Annual Conference on Structure in Complexity Theory, 1990, 91–99.

  13. M. S. Paterson, N. Pippenger, andU. Zwick: Optimal carry save networks,Boolean Function Complexity: selected papers for the LMS symposium Durham 1990., Cambridge Univ. Press, 1992, 174–201.

  14. J. Radhakrishnan: Better bounds for threshold formulas.Proceedings of the 32nd IEEE FOCS, 1991, 314–323.

  15. J. Radhakrishnan: Improved bounds for covering complete uniform hypergraphs.Information Processing Letters 41 (1992), 203–207.

    Google Scholar 

  16. M. Snir: The covering problem of complete uniform hypergraphs,Discrete Math. 27 1979, 103–105.

    Google Scholar 

  17. L. G. Valiant: Short monotone formulae for the majority function,Journal of Algorithms 5 (1984), 363–366.

    Google Scholar 

  18. I. Wegener:The Complexity of Boolean Functions, Wiley-Teubner Series in Computer Science, 1987.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radhakrishnan, J. ∑II∑ threshold formulas. Combinatorica 14, 345–374 (1994). https://doi.org/10.1007/BF01212982

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01212982

AMS subject classification code (1991)

Navigation