Every arrangement extends to a spread

This is a preview of subscription content, access via your institution.

References

  1. [1]

    B. Grünbaum:Arrangements and Spreads. American Mathematical Society, Providence, Rhode Island, 1972.

    Google Scholar 

  2. [2]

    F. Levi: Die Teilung der projektiven Ebene durch Geraden oder Pseudogeraden,Ber. Math.-Phys. Kl. sächs. Akad. Wiss. Leipzig 78 (1926), 256–267.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

Supported in part by NSA grant MDA904-89-H-2038, PSC-CUNY grant 662330, and the Center for Discrete Mathematics and Theoretical Computer Science (DIMACS), a National Science Foundation Science and Technology Center under NSF grant STC88-09648.

Supported in part by NSF grant CCR-8901484, NSA grant MDA904-89-H-2030, and DIMACS.

Supported in part by DIMACS.

Supported in part by DIMACS.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Goodman, J.E., Pollack, R., Wenger, R. et al. Every arrangement extends to a spread. Combinatorica 14, 301–306 (1994). https://doi.org/10.1007/BF01212978

Download citation

AMS subject classification code (1991)

  • 51 H 10
  • 51 A 45
  • 05 B 99
  • 51 D 20
  • 52 A 10
  • 52 C 99
  • 57 N 05